

Disposición de rodamientos fijo - libre

Elección de la disposición de rodamientos

Para guiar y apoyar un eje se necesitan al menos dos rodamientos que estén dispuestos a cierta distancia entre sí. Según la aplicación se elige una disposición de rodamientos fijo - libre, de rodamientos ajustados o de rodamientos flotantes.

Disposición de rodamientos fijo - libre

En un eje apoyado por dos rodamientos radiales, debido a las tolerancias de mecanizado es muy raro que las distancias entre los asientos de los rodamientos sobre el eje y el alojamiento coincidan exactamente. Las distancias también pueden variar por el calentamiento en servicio. Estas diferencias de distancia se compensan en el rodamiento libre.

Los rodamientos de rodillos cilíndricos tipo N y NU son rodamientos libres ideales. Su corona de rodillos puede desplazarse sobre la pista de rodadura del aro sin reborde.

Los demás tipos de rodamientos, p.e. los rodamientos rígidos de bolas y los rodamientos oscilantes de rodillos solamente actúan como rodamientos libres si un aro tiene ajuste deslizante. El aro bajo carga puntual (ver tabla en página 104) recibe un ajuste deslizante; generalmente el aro exterior.

En cambio, el rodamiento fijo guía el eje axialmente y transmite fuerzas axiales exteriores. En ejes con más de dos rodamientos, solamente un rodamiento está dispuesto como rodamiento fijo para evitar precargas axiales.

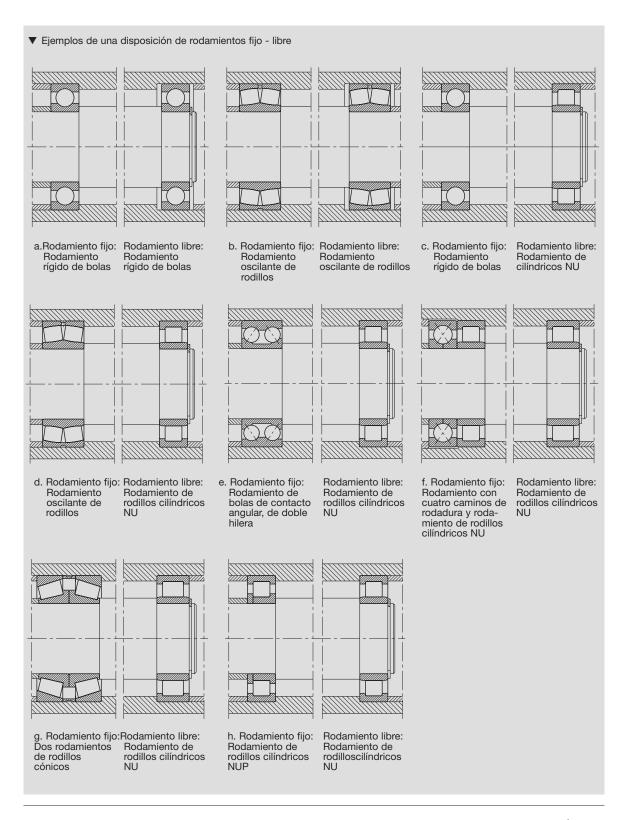
La decisión qué tipo de rodamiento va a ser el rodamiento fijo depende de la magnitud de la carga axial y de la precisión con la cual debe guiarse axialmente el eje.

Por ejemplo con un rodamiento de bolas de contacto angular, de doble hilera, se consigue un guiado axial mayor que con un rodamiento rígido de bolas o un rodamiento oscilante de rodillos. Una pareja de rodamientos de bolas de contacto angular o de rodamientos de rodillos cónicos, simétricamente dispuestos, ofrece un guiado axial muy preciso cuando se diseñan como rodamiento fijo.

Los rodamientos de bolas de contacto angular en ejecución para montaje universal son especialmente ventajosos. Los rodamientos pueden emparejarse indistintamente en disposiciones en X o en

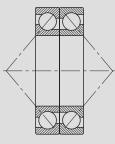
O. Los rodamientos de bolas de contacto angular para montaje universal están acabados de tal forma que al montarlos en disposición en X o en O tienen poco juego axial (ejecución UA), juego nulo (UO) o una ligera precarga (UL).

Los rodamientos para husillos en ejecución para montaje universal UL tienen una ligera precarga al montarlos en disposición en X o en O (bajo demanda también se pueden suministrarse diseños con mayor precarga).

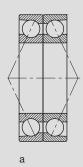

El montaje también se facilita con rodamientos de rodillos cónicos ajustados (ejecución N11) como rodamientos fijos. Se ajustan con un juego axial definido, con lo que ya no es necesario llevar a cabo trabajos de ajuste posteriores.

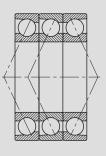
En el caso de transmisiones, a veces se monta un rodamiento con cuatro caminos de rodadura directamente al lado de un rodamiento de rodillos cilíndricos, consiguiendo una disposición de rodamiento fijo. Un rodamiento con cuatro caminos de rodadura cuyo aro exterior no está apoyado radialmente solamente puede transmitir fuerzas axiales. El rodamiento de rodillos cilíndricos absorbe la carga radial.

Para fuerzas axiales pequeñas, un rodamiento de rodillos cilíndricos tipo NUP también sirve como rodamiento fijo.

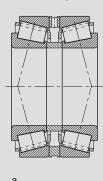

Disposición de rodamientos fijo - libre

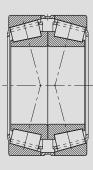
Disposición de rodamientos fijo - libre


▼ Pareja de rodamientos de bolas de contacto angular en ejecución para montaje universal como rodamiento fijo a = disposición en O, b = disposición en X



b

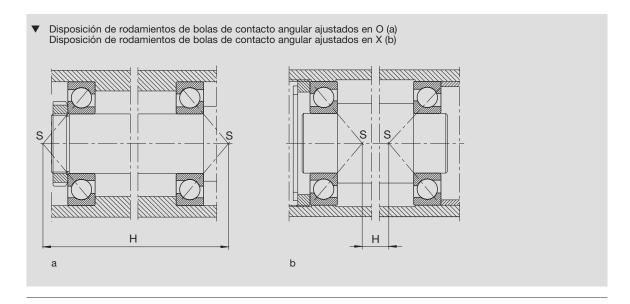

▼ Rodamientos para husillos en ejecución para montaje universal como rodamiento fijo a = disposición en O, b = disposición en X, c = disposición en tándem-O



▼ Pareja de rodamientos de rodillos cónicos como rodamiento fijo a = disposición en O, b = disposición en X

а

b

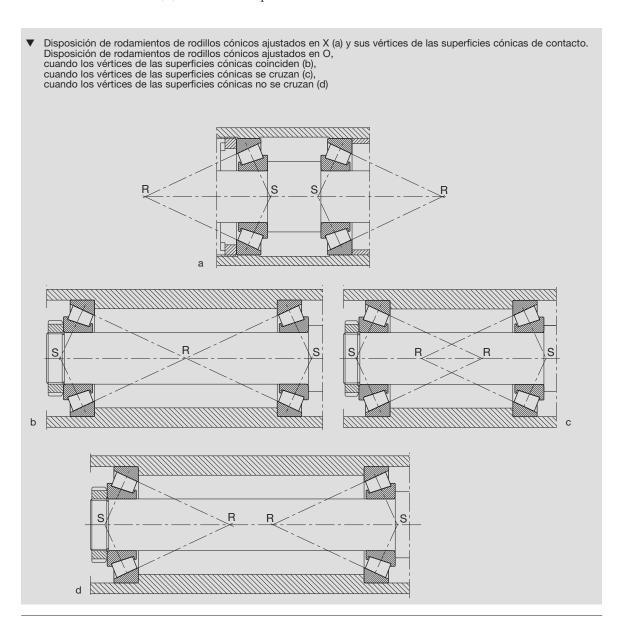

Disposición de rodamientos ajustados

Disposición de rodamientos ajustados

Por regla general, una disposición de rodamientos ajustados consta de dos rodamientos de bolas de contacto angular o rodamientos de rodillos cónicos, simétricamente dispuestos. Durante el montaje, un aro del rodamiento se desplazará sobre su asiento hasta que el conjunto de rodamientos haya alcanzado el juego o la precarga necesaria. Dada esta posibilidad de ajuste, la disposición de rodamientos ajustados es idónea para aplicaciones que requieran un guiado preciso; por ejemplo en apoyos de piñones con engranajes de dentado helicoidal y en los rodamientos para husillos de máquinas-herramienta. En principio puede elegirse tanto una disposición en X como en O.

En la disposición en O, los conos formados por las líneas de contacto con sus vértices S señalan hacia afuera mientras que en la disposición en X los vértices lo hacen hacia dentro.

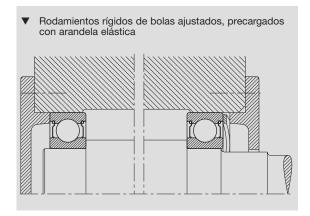
La base de soporte H, es decir la distancia entre los vértices de los conos de contacto es mayor en la disposición en O que en la en X. Por ello, la disposición en O posibilita un ladeo menor.


Disposición de rodamientos ajustados

Al ajustar el juego axial, conviene tener en cuenta la dilatación térmica. En la disposición en X (a), un gradiente de temperatura desde el eje al alojamiento siempre lleva a una reducción del juego (condiciones previas: los materiales del eje y del soporte deben ser idénticos, las temperaturas de los aros interiores y del eje entero y las de los aros exteriores y del soporte deben ser la mismas).

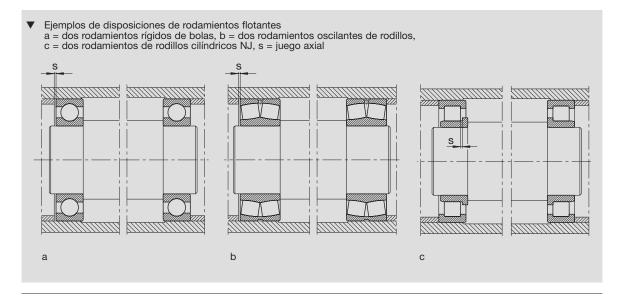
En cambio, en la disposición en O, se distingue entre tres situaciones. Si los vértices de las superficies cónicas de contacto (R) – es decir, los puntos

de intersección de la prolongación del camino de rodadura del aro exterior – coinciden en un punto (b), se mantendrá el juego ajustado bajo las condiciones arriba mencionadas.


Al cruzarse las superficies cónicas de contacto (c) debido a la corta distancia entre los rodamientos se reducirá el juego axial debido a la dilatación térmica. Sin embargo el juego axial aumenta si a una distancia mayor entre los rodamientos las superficies cónicas no se tocan (d).

Disposición de rodamientos ajustados • Disposición de rodamientos flotantes

Una disposición de rodamientos ajustados también se consigue a través de la precarga con muelles. Este tipo de ajuste elástico permite compensar dilataciones térmicas. También se emplean cuando los rodamientos están expuestos a vibraciones producidas con la máquina en reposo.


Disposición de rodamientos flotantes

La disposición de rodamientos flotantes es una solución económica cuando no se exige un guiado axial preciso del eje. Su construcción es similar a la disposición de rodamientos ajustados. Sin embargo, el eje puede desplazarse en el soporte por el juego axial s. El valor s se determina en función de la precisión del guiado exigida de modo que bajo condiciones térmicas desfavorables, no se pueda producir una precarga axial de los rodamientos.

Los siguientes rodamientos son adecuados para disposiciones flotantes: rodamientos rígidos de bolas, rodamientos oscilantes de bolas y rodamientos oscilantes de rodillos. En ambos rodamientos uno de los aros – generalmente el aro exterior – recibe un ajuste deslizante.

En las disposiciones flotantes con rodamientos de rodillos cilíndricos tipo NJ, las variaciones longitudinales se compensan en los rodamientos. Los aros interior y exterior reciben un ajuste fijo.

Los rodamientos de rodillos cónicos y los rodamientos de bolas de contacto angular no son apropiados para una disposición flotante ya que han de ser ajustados para que giren correctamente.

Rodamientos solicitados estáticamente · Rodamientos solicitados dinámicamente

Dimensionado

Muchas veces el diámetro del agujero de los rodamientos viene especificado por el diseño general de la máquina o dispositivo. Sin embargo, para determinar finalmente las demás medidas principales y el tipo de rodamiento, conviene averiguar mediante un cálculo de dimensionado, si las exigencias de vida, seguridad estática y rentabilidad quedan satisfechas. En este cálculo se hace una comparación entre la solicitación del rodamiento y su capacidad de carga.

En la técnica de rodamientos se distingue entre solicitación dinámica y solicitación estática.

Una solicitación estática tiene lugar si el movimiento relativo entre los aros de los rodamientos es nulo o muy lento (n < 10 min⁻¹). En estos casos se examinará la seguridad contra deformaciones plásticas demasiado elevadas en los caminos de rodadura y en los cuerpos rodantes.

La mayoría de los rodamientos se solicitan dinámicamente. Sus aros giran relativamente entre sí. Con el cálculo de dimensionado se examina la seguridad contra la fatiga prematura del material de los caminos de rodadura y de los cuerpos rodantes.

Sólo en escasas ocasiones el cálculo de vida nominal según DIN ISO 281 indica la vida realmente alcanzable. Sin embargo, para obtener construcciones económicas ha de sacarse el máximo provecho posible de las capacidades de los rodamientos. Cuanto más prestaciones se exijan, tanto más importante es tener un dimensionado preciso de los rodamientos. El acreditado método de cálculo FAG para la vida alcanzable considera las influencias del servicio y del ambiente en el cálculo. El método se basa en la norma DIN ISO 281 y en los conocimientos publicados por FAG en 1981 sobre la resistencia a la fatiga de rodamientos. Entretanto, este sistema de cálculo ha sido perfeccionado de tal modo que puedan dimensionarse rodamientos fiablemente incluso bajo la presencia de un lubricante contaminado.

Las capacidades de carga dinámica y estática indicadas en este catálogo son aplicables a rodamientos de acero al cromo, con el tratamiento térmico estándar, sólo en el rango de temperatura de servicio normal de hasta 100 °C. La dureza mínima de los caminos de rodadura y elementos rodantes es de 58 HRC.

Temperaturas de servicio más elevadas reducen la dureza del material que resulta en drásticas pérdidas de capacidad de carga de los rodamientos. Por favor consulte con la Ingeniería de Aplicación FAG en tales casos.

Rodamientos solicitados estáticamente

Bajo una solicitación a carga estática, se calcula el factor de esfuerzos estáticos f_s, para demostrar que se ha elegido un rodamiento con suficiente capacidad de carga.

$$f_s = \frac{C_0}{P_0}$$
siendo

 $egin{array}{ll} f_s & ext{factor de esfuerzos estáticos} \ C_0 & ext{capacidad de carga estática} & ext{[kN]} \ P_0 & ext{carga estática equivalente} & ext{[kN]} \end{array}$

El factor de esfuerzos estáticos f_s se toma como valor de seguridad contra deformaciones demasiado elevadas en los puntos de contacto de los cuerpos rodantes. Para rodamientos que deban girar con gran suavidad y facilidad, habrá que elegir un factor de esfuerzos estáticos f_s mayor. Si las exigencias de suavidad de giro son más reducidas, bastan valores más pequeños. En general se pretende conseguir los siguientes valores:

 $f_s = 1,5 \dots 2,5$ para exigencias elevadas

 $f_s = 1.0 \dots 1.5$ para exigencias normales

 $f_s = 0.7 \dots 1.0$ para exigencias reducidas

Los valores recomendados para los rodamientos axiales oscilantes de rodillos y rodamientos de precisión se indican en las tablas.

La capacidad de carga estática C_0 [kN] según DIN ISO 76 – 1988, está indicada en las tablas para cada rodamiento. Esta carga (en rodamientos radiales una carga radial y en rodamientos axiales una carga axial y centrada) en el centro del área de contacto más cargada entre los cuerpos rodantes y el camino de rodadura produciría una presión superficial teórica p_0 de:

- 4600 N/mm² para rodamientos oscilantes de bolas
- 4200 N/mm² para todos los demás rodamiento de bolas
- 4000 N/mm² para todos los rodamientos de rodillos

Bajo una solicitación C_0 (correspondiente a $f_s=1$) se origina una deformación plástica total del elemento rodante y el camino de rodadura de aprox. 1/10,000 del diámetro del elemento rodante en el área de contacto más cargada..

La carga estática equivalente P₀ [kN] es un valor teórico. Es una carga radial en rodamientos radiales y una carga axial y centrada en los rodamientos axiales. P₀ origina la misma solicitación en el punto de contacto más cargado entre cuerpos rodantes y camino de rodadura que la carga combinada real.

Rodamientos solicitados estáticamente · Rodamientos solicitados dinámicamente

P_0	$= X_0$	· F	Y .	F _a	[kN]	
± ()	4 3()	- r	- ()	* a	1121 1	

siendo

P₀ Carga estática equivalente [kN]

F_r Carga radial [kN]

F_a Carga axial [kN]

X₀ Factor radial

Y₀ Factor axial

Los valores para X_0 e Y_0 así como información sobre el cálculo de la carga estática equivalente para los distintos tipos de rodamientos están indicados en las tablas de rodamientos o en los textos preliminares.

La carga dinámica equivalente P [kN] es un valor teórico. Es una carga radial en rodamientos radiales y una carga axial en rodamientos axiales, que es constante en magnitud y sentido. P produce la misma vida que la combinación de cargas.

 $P = X \cdot F_r + Y \cdot F_2 \qquad [kN]$

siendo

P Carga dinámica equivalente [kN]

F_r Carga radial [kN]

F_a Carga axial [kN]

X Factor radial

Y Factor axial

Los valores X e Y así como información sobre el cálculo de la carga dinámica equivalente para los distintos tipos de rodamientos están indicados en las tablas de rodamientos o en los textos preliminares.

El exponente de vida p es diferente para rodamientos de bolas y de rodillos.

p = 3 para rodamientos de bolas

 $p = \frac{10}{3}$ para rodamientos de rodillos

Rodamientos solicitados dinámicamente

En el método de cálculo normalizado (DIN/ISO 281) para rodamientos solicitados dinámicamente, se parte de la fatiga del material (formación de pitting) como causa del deterioro del rodamiento. La fórmula de vida es:

$$L_{10} = L = \left(\frac{C}{P}\right)^{P} \left[10^{6} \text{ revoluciones}\right]$$

siendo

 $L_{10} = L$ vida nominal [10⁶ revoluciones]

C capacidad de carga dinámica [kN]

P carga dinámica equivalente [kN]

p exponente de vida

L₁₀ es la vida nominal en millones de revoluciones alcanzada o rebasada por lo menos de un 90% de un gran lote de rodamientos iguales.

La capacidad de carga dinámica C [kN] según DIN ISO281 - 1993 se indica en las tablas para cada rodamiento. Con esta carga se alcanza una vida $\rm L_{10}$ de $\rm 10^6$ revoluciones.

Si la velocidad del rodamiento es constante, la duración puede expresarse en horas

$$L_{h10} = L_h = \frac{L \cdot 10^6}{n \cdot 60} [h]$$

siendo

 $L_{h10} = L_h \text{ vida nominal}$ [h]

L vida nominal [10⁶ revoluciones]

n velocidad (revoluciones por minuto)[min⁻¹].

Convirtiendo la ecuación se obtiene:

$$L_h = \frac{L \cdot 500 \cdot 33 \frac{1}{3} \cdot 60}{n \cdot 60}$$

$$\frac{L_h}{500} = \left(\frac{C}{P}\right)^P \cdot \left(\frac{33\frac{1}{3}}{n}\right)$$

$$o \quad \cdot \quad \sqrt[p]{\frac{L_h}{500}} \, = \, \sqrt[p]{\frac{33 \, \frac{1}{3}}{n}} \cdot \frac{C}{P}$$

Rodamientos solicitados dinámicamente

siendo

$$f_L = \sqrt[p]{\frac{L_h}{500}}$$
 factor de esfuerzos dinámicos

es decir f_L = 1 para una vida de 500 horas.

$$f_n = \sqrt[p]{\frac{33\frac{1}{3}}{n}}$$
 factor de velocidad

es decir, $f_n = 1$ para una velocidad de 33 $\frac{1}{3}$ min⁻¹.

Ver página 34 valores f_n de rodamientos de bolas y página 35 para rodamientos de rodillos. Así se obtiene la fórmula reducida de vida

$$f_L = \frac{C}{P} \cdot f_n$$

siendo

f_L Factor de esfuerzos dinámicos

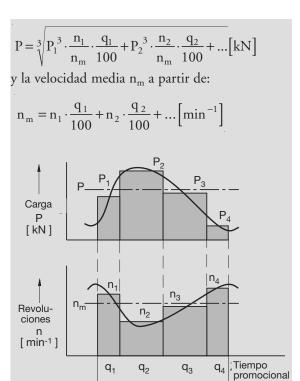
C Capacidad de carga dinámica [kN]

P Carga dinámica equivalente [kN]

f_n Factor de velocidad

Para la conversión de f_L en L_h ver la tabla de la página 34 para rodamientos de bolas y la página 35 para rodamientos de rodillos.

Los valores f_L y L_h solamente sirven para determinar los factores necesarios para un dimensionado, si una comparación con rodamientos acreditados es posible. Para determinar con mayor exactitud la vida alcanzable también han de considerarse los parámetros de la lubricación, la temperatura y la limpieza (ver página 40 y sigs.).


Carga y velocidad variables

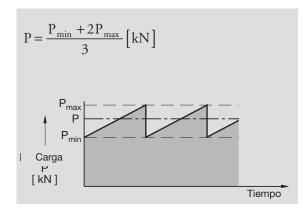
Si la carga y la velocidad de un rodamiento solicitado dinámicamente cambian con el tiempo, es necesario contar con este hecho al calcular la carga equivalente. Por aproximación a la curva real se toman una serie de valores de carga y de velocidades con una determinada parte proporcional del tiempo q [%.] En este caso se obtiene la carga dinámica equivalente a partir de

Factor de esfuerzos dinámicos f_L

El valor f_L es un valor empírico mínimo obtenido de la experiencia ganada en aplicaciones de rodamientos iguales o semejantes. Los valores f_L ayudan a seleccionar el tamaño correcto de rodamiento. En las tablas de las páginas 36 a 40 se indican los valores de f_L que deben alcanzarse en distintas aplicaciones de rodamientos. Estos valores tienen en cuenta no sólo la vida la fatiga sino también otras exigencias como la rigidez, el peso reducido para construcciones ligeras, la fácil adaptación a partes adyacentes ya existentes, cargas puntuales extremas, etc. (ver también publicaciones de FAG sobre aplicaciones especiales). Los valores de f_L de acuerdo con las últimas normas resultan del progreso técnico.

Para comparar con una aplicación de rodamientos ya realizada con éxito, es lógico calcular las solicitaciones a carga según el mismo método. Los datos habituales para el cálculo se listan en las tablas al igual que los valores $f_{\rm L}.$ En aquellos casos en los que sea necesario aplicar factores de corrección, se indican los valores de $f_{\rm z}.$ Entonces, en vez de P se tomará el valor $f_{\rm z} \cdot P.$ A partir del valor de $f_{\rm L}$ calculado se determinará la vida nominal $L_{\rm h}.$

-100%


Rodamientos solicitados dinámicamente

Para simplificar el cálculo se supone el exponente 3 en la fórmula, tanto para los rodamientos de bolas como para los de rodillos.

Si la carga es variable, pero la velocidad es constante:

$$P = \sqrt[3]{P_1^3 \cdot \frac{q_1}{100} + P_2^3 \cdot \frac{q_2}{100} + \dots} [kN]$$

Si a velocidad constante, la carga crece linealmente de un valor mínimo P_{min} a un valor máximo P_{max} :

Para el cálculo de vida ampliada (ver página 40) no debe usarse el valor medio de la carga dinámica equivalente. La carga general de un rodamiento consiste en varios tipos de carga. Los tiempos durante los cuales el mismo tipo de carga actúa sobre el rodamiento deben sumarse y las subsumas individuales utilizadas en el cálculo $L_{\rm hna}$. La vida alcanzable puede calcularse usando la fórmula de la página 49.

Solicitación a carga mínima de los rodamientos, evitar un sobredimensionado

Bajo solicitación a carga demasiado baja – p. e. a gran velocidad durante las pruebas, puede producirse deslizamiento que a su vez puede llevar a deterioros en el rodamiento si la lubricación es insuficiente. Como solicitación a carga mínima para los rodamientos radiales recomendamos

rodamientos de bolas con jaula: P/C = 0.01, rodamientos de rodillos con jaula: P/C = 0.02, los rodamientos llenos de rodillos:P/C = 0.04

(P es la carga dinámica equivalente, C la capacidad de carga dinámica).

La solicitación a carga mínima de los rodamientos axiales está indicada en los textos preliminares de las tablas.

Por favor consulte con nuestro servicio técnico en caso de preguntas sobre la solicitación a carga mínima de los rodamientos.

Un sobredimensionado de los rodamientos puede disminuir la vida de servicio. Los rodamientos sobredimensionados están expuestos a deslizamiento y a un aumento de la solicitación del lubricante con lubricación a vida con grasa. El deslizamiento puede destruir las superficies funcionales con surcos y micropittings . Sin embargo, para obtener un disposición económica y fiable conviene sacar máximo provecho de la capacidad de carga. Para ello es necesario tener en cuenta otros parámetros aparte de la capacidad de carga, como se realiza en el cálculo de vida ampliada.

Observaciones

Los métodos de cálculo y los símbolos indicados anteriormente se corresponden con las indicaciones según DIN ISO 76 y 281. Para simplificar, en las fórmulas y tablas, se utilizan los símbolos C y C_0 para las capacidades de carga dinámica y estática para rodamientos radiales y axiales, igual que P y P_0 para las cargas dinámicas y estáticas equivalentes, respectivamente. La norma hace la siguiente distinción:

 C_{r} capacidad de carga dinámica radial C_a capacidad de carga dinámica axial C_{0r} capacidad de carga estática radial C_{0a} capacidad de carga estática axial P, carga dinámica equivalente radial P_a carga dinámica equivalente axial P_{0r} carga estática equivalente radial P_{0a} carga estática equivalente axial

Para simplificar, en este catálogo se ha prescindido de los índices r y a en los valores de C y de P, ya que en la práctica no es posible confundir las capacidades de carga y las cargas equivalentes de los rodamientos radiales y de los axiales.

La norma DIN ISO 281 se limita a la indicación de la vida nominal L_{10} y de la vida ampliada L_{na} en 10^6 revoluciones. De aquí puede obtenerse la vida expresada en horas L_h y L_{hna} (véase también las páginas 31 y 40). En la práctica es usual la valoración a partir de L_h y L_{hna} y especialmente del factor de esfuerzos dinámicos f_L . Por esta razón se han descrito en este catálogo valores de orientación para los factores de esfuerzos dinámicos f_L y fórmulas para la determinación de la vida en horas L_h y L_{hna} como complemento a la norma.

Vida L_h y factor de velocidad f_n para rodamientos de bolas

L _h	f_L	L _h	f_L	L_h	f_L	L _h	f_{L}	L _h	500 f _L
h		h		h		h		h	
100 110 120 130 140	0,585 0,604 0,621 0,638 0,654	420 440 460 480 500	0,944 0,958 0,973 0,986	1700 1800 1900 2000 2200	1,5 1,53 1,56 1,59 1,64	6500 7000 7500 8000 8500	2,35 2,41 2,47 2,52 2,57	28000 30000 32000 34000 36000	3,83 3,91 4 4,08 4,16
150 160 170 180 190	0,669 0,684 0,698 0,711 0,724	550 600 650 700 750	1,03 1,06 1,09 1,12 1,14	2400 2600 2800 3000 3200	1,69 1,73 1,78 1,82 1,86	9000 9500 10000 11000 12000	2,62 2,67 2,71 2,8 2,88	38000 40000 42000 44000 46000	4,24 4,31 4,38 4,45 4,51
200 220 240 260 280	0,737 0,761 0,783 0,804 0,824	800 850 900 950 1000	1,17 1,19 1,22 1,24 1,26	3400 3600 3800 4000 4200	1,89 1,93 1,97 2 2,03	13000 14000 15000 16000 17000	2,96 3,04 3,11 3,17 3,24	48000 50000 55000 60000 65000	4,58 4,64 4,79 4,93 5,07
300 320 340 360 380	0,843 0,862 0,879 0,896 0,913	1100 1200 1300 1400 1500	1,3 1,34 1,38 1,41 1,44	4400 4600 4800 5000 5500	2,06 2,1 2,13 2,15 2,22	18000 19000 20000 22000 24000	3,3 3,36 3,42 3,53 3,63	70000 75000 80000 85000 90000	5,19 5,31 5,43 5,54 5,65
400	0,928	1600	1,47	6000	2,29	26000	3,73	100000	5,8

▼ Valores	f _n para roda	mientos de	bolas					$f_n = \sqrt[3]{$	33 ½ n
n	f _n	n	f _n	n	f _n	n	f _n	n	f_n
min ⁻¹		min ⁻¹		min ⁻¹		min ⁻¹		min ⁻¹	
10	1,49	55	0,846	340	0,461	1800	0,265	9500	0,152
11	1,45	60	0,822	360	0,452	1900	0,26	10000	0,149
12	1,41	65	0,8	380	0,444	2000	0,255	11000	0,145
13	1,37	70	0,781	400	0,437	2200	0,247	12000	0,141
14	1,34	75	0,763	420	0,43	2400	0,24	13000	0,137
15	1,3	80	0,747	440	0,423	2600	0,234	14000	0,134
16	1,28	85	0,732	460	0,417	2800	0,228	15000	0,131
17	1,25	90	0,718	480	0,411	3000	0,223	16000	0,128
18	1,23	95	0,705	500	0,405	3200	0,218	17000	0,125
19	1,21	100	0,693	550	0,393	3400	0,214	18000	0,123
20	1,19	110	0,672	600	0,382	3600	0,21	19000	0,121
22	1,15	120	0,652	650	0,372	3800	0,206	20000	0,119
24	1,12	130	0,635	700	0,362	4000	0,203	22000	0,115
26	1,09	140	0,62	750	0,354	4200	0,199	24000	0,112
28	1,06	150	0,606	800	0,347	4400	0,196	26000	0,109
30	1,04	160	0,593	850	0,34	4600	0,194	28000	0,106
32	1,01	170	0,581	900	0,333	4800	0,191	30000	0,104
34	0,993	180	0,57	950	0,327	5000	0,188	32000	0,101
36	0,975	190	0,56	1000	0,322	5500	0,182	34000	0,0993
38	0,957	200	0,55	1100	0,312	6000	0,177	36000	0,0975
40	0,941	220	0,533	1200	0,303	6500	0,172	38000	0,0957
42	0,926	240	0,518	1300	0,295	7000	0,168	40000	0,0941
44	0,912	260	0,504	1400	0,288	7500	0,164	42000	0,0926
46	0,898	280	0,492	1500	0,281	8000	0,161	44000	0,0912
48	0,886	300	0,481	1600	0,275	8500	0,158	46000	0,0898
50	0,874	320	0,471	1700	0,27	9000	0,155	50000	0,0874

Vida L_h y factor de velocidad f_n para rodamientos de rodillos

L _h	f_L	L _h	f_L	L _h	f_L	L _h	f_L	L _h	500 f _L
h	-	h	-	h	-	h	_	h	_
100 110 120 130 140	0,617 0,635 0,652 0,668 0,683	420 440 460 480 500	0,949 0,962 0,975 0,988	1700 1800 1900 2000 2200	1,44 1,47 1,49 1,52 1,56	6500 7000 7500 8000 8500	2,16 2,21 2,25 2,3 2,34	28000 30000 32000 34000 36000	3,35 3,42 3,48 3,55 3,61
150 160 170 180 190	0,697 0,71 0,724 0,736 0,748	550 600 650 700 750	1,03 1,06 1,08 1,11 1,13	2400 2600 2800 3000 3200	1,6 1,64 1,68 1,71 1,75	9000 9500 10000 11000 12000	2,38 2,42 2,46 2,53 2,59	38000 40000 42000 44000 46000	3,67 3,72 3,78 3,83 3,88
200 220 240 260 280	0,76 0,782 0,802 0,822 0,84	800 850 900 950 1000	1,15 1,17 1,19 1,21 1,23	3400 3600 3800 4000 4200	1,78 1,81 1,84 1,87 1,89	13000 14000 15000 16000 17000	2,66 2,72 2,77 2,83 2,88	48000 50000 55000 60000 65000	3,93 3,98 4,1 4,2 4,31
300 320 340 360 380	0,858 0,875 0,891 0,906 0,921	1100 1200 1300 1400 1500	1,27 1,3 1,33 1,36 1,39	4400 4600 4800 5000 5500	1,92 1,95 1,97 2 2,05	18000 19000 20000 22000 24000	2,93 2,98 3,02 3,11 3,19	70000 80000 90000 100000 150000	4,4 4,58 4,75 4,9 5,54
400	0,935	1600	1,42	6000	2,11	26000	3,27	200000	6,03

▼ Valores	f _n para rodar	nientos de r	odillos					$f_n = \frac{10}{3}$	$\frac{33\frac{1}{3}}{9}$
n	f _n	n	f _n	n	f _n	n	f_n	n	f _n
min ⁻¹		min ⁻¹		min ⁻¹		min ⁻¹		min ⁻¹	
10	1,44	55	0,861	340	0,498	1800	0,302	9500	0,183
11	1,39	60	0,838	360	0,49	1900	0,297	10000	0,181
12	1,36	65	0,818	380	0,482	2000	0,293	11000	0,176
13	1,33	70	0,8	400	0,475	2200	0,285	12000	0,171
14	1,3	75	0,784	420	0,468	2400	0,277	13000	0,167
15	1,27	80	0,769	440	0,461	2600	0,270	14000	0,163
16	1,25	85	0,755	460	0,455	2800	0,265	15000	0,16
17	1,22	90	0,742	480	0,449	3000	0,259	16000	0,157
18	1,2	95	0,73	500	0,444	3200	0,254	17000	0,154
19	1,18	100	0,719	550	0,431	3400	0,25	18000	0,151
20	1,17	110	0,699	600	0,42	3600	0,245	19000	0,149
22	1,13	120	0,681	650	0,41	3800	0,242	20000	0,147
24	1,1	130	0,665	700	0,401	4000	0,238	22000	0,143
26	1,08	140	0,65	750	0,393	4200	0,234	24000	0,139
28	1,05	150	0,637	800	0,385	4400	0,231	26000	0,136
30	1,03	160	0,625	850	0,378	4600	0,228	28000	0,133
32	1,01	170	0,613	900	0,372	4800	0,225	30000	0,13
34	0,994	180	0,603	950	0,366	5000	0,222	32000	0,127
36	0,977	190	0,593	1000	0,36	5500	0,216	34000	0,125
38	0,961	200	0,584	1100	0,35	6000	0,211	36000	0,123
40	0,947	220	0,568	1200	0,341	6500	0,206	38000	0,121
42	0,933	240	0,553	1300	0,333	7000	0,201	40000	0,119
44	0,92	260	0,54	1400	0,326	7500	0,197	42000	0,117
46	0,908	280	0,528	1500	0,319	8000	0,193	44000	0,116
48	0,896	300	0,517	1600	0,313	8500	0,19	46000	0,114
50	0,885	320	0,507	1700	0,307	9000	0,186	50000	0,111

Valores de orientación para f_L y valores usuales de cálculo

Lugar de aplicación	Valor f _L que debe alcanzarse	Valores usuales de cálculo	Valores usuales de cálculo				
Vehículos		Accionamiento					
Motocicletas Coches accionamiento Rodamientos protegidos contra la suciedad (transmisiones) Coches: rodamientos de ruedas Camiones ligeros Camiones medios Camiones pesados Autobuses	0,9 1,6 1 1,3 0,7 1 1,4 2,2 1,6 1,8 2,2 2 2,6 1,8 2,8	eniendo en tirse. El valor de f_{L1} , f_{L2} , f_{L3} npos					
		Rodamientos de ruedas, ejemplo para gr	upos de cargas				
		Carga estática del eje K_{estat} a la velocidad m Valor medio de f_L (véase arriba) de tres tipos Marcha en línea recta en carretera buena co Marcha en línea recta en carretera mala cor Marcha en curvas con $K_{estat} \cdot f_z \cdot m$ Tipo de vehículo	s de marcha: on K _{estat}				
			Factor f _z				
		Turismo, autobús, moto Furgoneta, camión, tractor Camión todo terreno, tractor agrícola	1,3 1,5 1,5 1,7				
		m es el factor de adhesión al terreno					
		Tipo de rueda					
		Ruedas conducidas Ruedas no conducidas	0,6 0,35				
Motor de combustión	1,2 2	Esfuerzos máximos (fuerza de expansión, fuen el punto muerto superior con carga máximáxima velocidad	0,6 0,35 erzas de inercia)				
		Factor f _z :	Diseas				
		Tipo Gasolina	Diesel				
		dos tiempos 0,35 cuatro tiempo 0,3	0,5 0,4				
Vehículos sobre carriles							
Rodamientos de rueda para Vagones de transporte Tranvías Coches de viajeros	2,5 3,5 3,5 4 3 3,5	Carga estática sobre la mangueta con facto velocidad máxima, tipo de vehículo e infrae: Tipo de vehículo					
Vagones de cárga Vagones de desescombro Automotores Locomotoras/ rodamientos exteriores	3 3,5 3 3,5 3,5 4 3,5 4	Vagones de desescombro, de extracción y de instalaciones siderúrgicas Vagones de mercancías, coches de viajeros	1,2 1,4 s,				
Locomotoras/ rodamientos interiores	4,5 5	automotores, tranvías Locomotoras	1,2 1,5 1,3 1,8				
Transmisiones de vehículos ferroviarios	3 4,5	Grupos de cargas con las correspondientes velocida valor medio de f _L (ver accionamiento de vehículos)					

Valores de orientación para $f_L\,y$ valores usuales de cálculo

Valor f _L que debe alcanzarse	Valores usuales de cálculo
3 4	Empuje máximo de la hélice; velocidad nominal
4 6 2,5 3,7 2 3 1,5 2,5	Peso proporcional del eje; velocidad nominal f _z = 2 Potencia nominal; velocidad nominal Potencia nominal; velocidad nominal Potencia nominal; velocidad nominal
	Rodamientos del timón
	cargados estáticamente por la presión del timón, el peso y el accionamiento
1,5 2 1,5 2 1 1,5	igual que vehículos igual que vehículos Potencia máxima; velocidad nominal
2 2,5 1 1,5 1,5 2 1,5 2,5 1 1,5	igual que vehículos par medio del motor hidrostático; velocidad media Fuerza centrífuga \cdot f $_z$ (Factor f $_z$ = 1,1 a 1,3)
1,5 2 3,5 4,5 4 5 3 3,5	peso del rotor \cdot f_z ; velocidad nominal factor $f_z = 1,5$ a 2 para máquinas estacionarias $f_z = 1,5$ a 2,5 para motores de tracción para accionamientos por piñón; grupos de cargas con velocidades correspondientes
1 3 3 4 2,5 3,5 3,5 4,5	carga media de laminado; velocidad de laminación valor f _L según tipo de laminador y programa de laminado Par nominal o máximo; velocidad nominal Peso del material, golpes; velocidad de laminación Peso, masa excéntrica; número de revoluciones nominal
	Convertidores
	solicitados estáticamente por el peso máximo
3 4,5	Fuerza de corte, par motor, precarga peso de la pieza a mecanizar; velocidad de servicio
3 4 2,5 3,5 3,5 5 3 4 3,5 4 3 3,5 2 3	Potencia nominal; velocidad nominal Peso de volante; velocidad nominal Fuerza de prensado, tiempos alícuotos; velocidad nominal Fuerza de corte y accionamiento; velocidad nominal
	3 4 4 6 2,5 3,7 2 3,7 2, 3 1,5 2,5 1 1,5 1,5 2 1,5 2,5 1 1,5 1,5 2,5 1 1,5 1 1,5 1 3 3 4,5 3 4,5

Valores de orientación para $f_L\,y$ valores usuales de cálculo

Lugar de aplicación	Valor f _L que debe alcanzarse	Valores usuales de cálculo
Máquinas para trabajar la madera		
Husillos de tupis y ejes portacuchillas	3 4	Fuerzas de corte y de accionamiento; velocidad nominal
Rodamiento principal de sierras de bastidor	3,5 4	Fuerzas másicas; velocidad nominal
Rodamiento de la biela de sierras de bastidor Sierras circulares	2,5 3 2 3	Fuerzas másicas; velocidad nominal Fuerza de corte y accionamiento; velocidad nominal
Transmisiones de maquinaria en general		
Transmisiones universales Motoreductores Grandes transmisiones estacionarias	2 3 2 3 3 4,5	Potencia nominal; velocidad nominal Potencia nominal; velocidad nominal Potencia nominal; velocidad nominal
Manutención		
Cintas transportadoras para extracción a cielo abierto Rodillos de cintas transportadoras para extracción a cielo abierto Rodillos para cintas transportadoras en general Tambores para cinta transportadora Excavadoras de rotopalas, accionamiento Excavadoras de rotopalas, rotopalas Excavadoras de rotopalas, accionamiento de la rueda Poleas de extracción Poleas de cable Bombas, ventiladores, compresores Ventiladores, soplantes Grandes soplantes	4,5 5,5 4,5 5 2,5 3,5 4 4,5 2,5 3,5 4,5 6 4,5 5,5 4 4,5 2,5 3,5	Potencia nominal; velocidad nominal Peso de la cinta y carga; velocidad de servicio Peso de la cinta y carga; velocidad de servicio Tiro de la cinta, peso de la cinta y carga; velocidad en servicio Potencia nominal; velocidad nominal Resistencia a la excavación, peso; velocidad en servicio Potencia nominal; velocidad nominal Carga en cable; velocidad nominal (según DIN 22 410) Carga en cable; velocidad nominal Empuje radial o axial, peso del rotor, masa desequilibrada Masa desequilibrada = peso del rotor · fz; velocidad nominal
Bombas de émbolo Bombas centrífugas Bombas hidráulicas de émbolo, axiales y radiales Transmisiones de bombas Compresores	3,5 4,5 3 4,5 1 2,5 1 2,5 2 3,5	fz = 0,5 para soplantes de aire fresco fz = 0,8 a 1 para estractores de humos Empuje nominal; velocidad nominal Empuje axial, peso del rotor; velocidad nominal Presión nominal; velocidad nominal Presión en servicio; velocidad nominal Presión en servicio; fuerzas másicas; velocidad nominal
Centrifugadoras, batidoras	2 0,0	
Centrifugadoras Grandes batidoras	2,5 3 3,5 4	Peso, masa desequilibrada; velocidad nominal Peso, fuerza de accionamiento; velocidad nominal
Machacadoras, molinos, cribas, etc.		
Machacadoras de mandíbulas	3 3,5	Potencia de accionamiento, radio de excéntrica; velocidad nominal
Trituradoras, machacadoras de rodillos Molinos de mandíbulas, de impacto y de martillos Molinos de tubos Molinos vibratorios Molinos de pulverizado Cribas vibratorias Prensas para briquetas Rodillos para hornos giratorios	3 3,5 4 5 4 5 2 3 4 5 2,5 3 3,5 4 4 5	Fuerza de triturado; velocidad nominal Peso del rotor · fz, velocidad nominal; fz = 2 a 2,5 Peso total · fz; velocidad nominal; fz = 1,5 a 2,5 Fuerza centrífuga · fz; velocidad nominal; fz = 1,2 a 1,3 Esfuerzo de compresión · fz; número de revoluciones nominal fz = 1,5 a 3 Fuerza centrífuga · fz; número de revoluciones nominal; fz = 1,2 Esfuerzo de presión; número de revoluciones nominal Carga de los rodillos · fz; número de revoluciones nominal Factor para cargas excéntricas fz = 1,2 a 1,3; Si las cargas son muy elevadas debe comprobarse la capacidad de carga

Valores de orientación para f_L y valores usuales de cálculo

Lugar de aplicación	Valor f _L que debe alcanzarse	Valores usuales de cálculo
Máquinas de papel e imprenta Máquinas de papel, parte húmeda Máquinas de papel, parte de secado Máquinas de papel, refino Máquinas de papel, calandras Máquinas de imprenta Maquinaria textil Hiladoras, husillos de hilar Telares, tejedoras y calcetedoras Máquinas para la fabricación de plásticos Prensas de extrusión por tornillo sinfín Calandras para goma y plásticos Transmisiones por correa y cable Transmisión por cadena Correas trapeciales Correas de fibra Correas de cuero Bandas de acero Correas-cadena	que debe	Tracción del tamiz, tracción de los fieltros, peso de los cilin dros, esfuerzos de compresión; velocidad nominal Peso de los cilindros, esfuerzos de compresión; velocidad nominal Fuerzas centrífugas; velocidad nominal Fuerzas de accionamiento, fuerzas másicas, fuerzas centrífugas, número de revoluciones nominal Presión máxima de prensado; velocidad en servicio; en máquinas para prensado termoplástico debe comprobarse también la capacidad de carga estática Presión media de laminado; velocidad media; (temperatura) Fuerza tangencial · f₂ (debido a la precarga y a los golpes) f₂ = 1.5 f₂ = 2 2.5 f₂ = 2 3,5 f₂ = 2 3,5 f₂ = 1,5 2

Cálculo de vida ampliada

Cálculo de vida ampliada

La vida nominal L o L_h difiere más o menos de la vida prácticamente alcanzable de los rodamientos. La ecuación $L=(C/P)^P$ solamente tiene en cuenta la solicitación a carga. Sin embargo, la vida alcanzable también depende de una serie de parámetros como son el espesor de la película lubricante, la limpieza en el instersticio de lubricación, los aditivos del lubricante y el tipo de rodamiento.

Por esta razón, la norma DIN ISO 281 ha introducido la "vida ampliada" junto a la vida nominal, sin embargo hasta ahora no se han indicado valores numéricos para el factor que tiene en cuenta las condiciones de servicio. Con el método de cálculo FAG para la vida ampliada, las condiciones de servicio pueden expresarse en términos numéricos con el factor a₂₃. Además se tiene en cuenta el factor de esfuerzos estáticos f_{s*} como criterio para el dimensionado. Este factor sirve de medida para las cargas de presión máximas en los contactos de rodadura.

Vida ampliada (modificada)

Según DIN ISO 281, la vida ampliada (modificada) L_{na} se determina según la fórmula:

 $L_{na} = a_1 \cdot a_2 \cdot a_3 \cdot L [10^6 \text{ revoluciones}]$

o expresado en horas:

 $L_{hna} = a_1 \cdot a_2 \cdot a_3 \cdot L_h [h]$

siendo

 L_{na} vida ampliada (modificada) [10^6 revoluciones]

L_{hna} vida ampliada [h]

a₁ factor de probabilidad de fallo

a₂ factor de material

a₃ factor de condiciones de servicio

L, L_h vida nominal [10⁶ revoluciones], [h]

Factor a₁ para la probabilidad de fallo

Los fallos de rodamientos por fatiga están sujetos a las leyes estadísticas, por lo que es necesario tener en cuenta la probabilidad de fallo al calcular la vida a fatiga. En general se toma un 10 % de probabilidad de fallo. La vida L_{10} es la vida nominal. El factor a_1 también se utiliza para probabilidades de fallo entre 10 % y 1 %, ver la siguiente tabla.

▼ Factor a ₁						
Probabilidad de fallo %	10	5	4	3	2	1
Vida a fatiga	L ₁₀	L ₅	L ₄	L ₃	L ₂	L ₁
Factor a ₁	1	0,62	0,53	0,44	0,33	0,21

Factor a₂ de material

Con el factor a_2 se tienen en cuenta las características del material y del tratamiento térmico. La norma admite factores $a_2 > 1$ para rodamientos con un grado de pureza muy elevado del acero.

Factor a₃ de condiciones de servicio

El factor a_3 tiene en cuenta las condiciones de servicio, sobre todo las condiciones de lubricación a velocidad y temperatura de servicio. La norma todavía no incluye valores para este factor.

Cálculo de vida ampliada

Método de cálculo FAG de la vida ampliada

Diversas y sistemáticas investigaciones en el laboratorio y la experiencia obtenida en la práctica, nos permiten, hoy en día, cuantificar el efecto de distintas condiciones en servicio en la vida alcanzable de los rodamientos.

El método de cálculo de la vida ampliada está basado en DIN ISO 281. En él se tienen en cuenta los efectos de la magnitud de la carga, el espesor de la película lubricante, los aditivos del lubricante, la contaminación en el intersticio de lubricación y tipo de rodamiento.

Si los parámetros que influyen en la vida cambian durante el servicio, el valor de L_{hna} debe calcularse para cada periodo individual bajo condiciones constantes. La vida ampliada puede calcularse entonces con la fórmula de la página 49.

Este método de cálculo también confirma que los rodamientos tienen una vida ilimitada bajo las siguientes condiciones:

- máxima limpieza en el instersticio correspondiente a V = 0,3 (ver página 46)
- separación completa de las superficies de rodadura por la película lubricante.
- solicitación a carga correspondiente a $f_{s^*} \ge 8$ $f_{s^*} = C_0/P_{0^*}$

C₀ capacidad de carga estática [kN]

 P_{0^*} carga equivalente del rodamiento [kN], determinada por la fórmula

 $P_{0^*} = X_0 \cdot F_r + Y_0 \cdot F_a$ [kN],

donde X_0 y Y_0 son factores de las tablas de rodamientos y

F_r fuerza dinámica radial [kN]

F_a fuerza dinámica axial [kN]

Con el factor de carga f_{s^*} se relacionan las cargas del rodamiento y las cargas equivalentes generalmente utilizadas para dimensionado en Ingeniería Mecánica General.

Vida ampliada L_{na}, L_{hna}

$$L_{na} = a_1 \cdot a_{23} \cdot L \ [10^6 \text{ revoluciones}]$$

y
 $L_{hna} = a_1 \cdot a_{23} \cdot L_h \ [h]$

siendo

- a₁ factor para la probabilidad de fallo (ver pág. 40)
- a₂₃ Factor para el material y las condiciones de servicio.

Debido a su interdependencia FAG llegó a unir los factores a₂ y a₃ indicados en la norma DIN ISO 281 en el factor a₂₃, siendo

 $\mathbf{a}_{23} = \mathbf{a}_2 \cdot \mathbf{a}_3$

L vida nominal [10⁶ revoluciones]

L_h vida nominal [h]

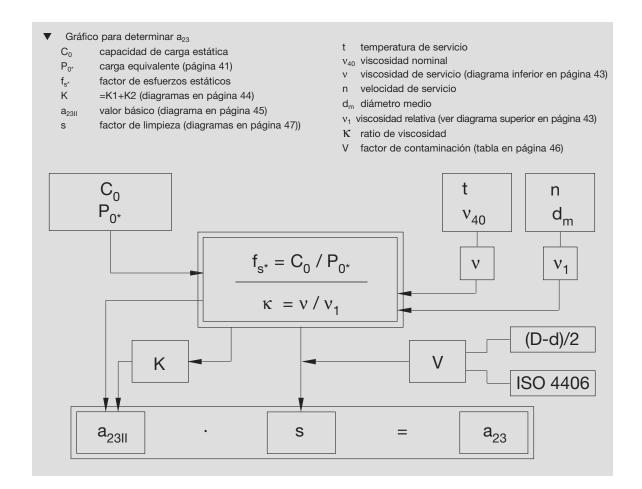
Factor a₂₃

El factor a_{23} para la determinación de la vida ampliada L_{na} o L_{hna} (ver sección anterior) se obtiene de la fórmula

 $a_{23} = a_{23II} \cdot s$ donde

a_{23II} valor básico (diagrama en página 45)

s factor de limpieza (diagramas en página 47)


El factor a_{23} tiene en cuenta los efectos del material, del tipo de rodamiento, la carga, la lubricación y la limpieza, ver gráfico en página 42.

Como punto de partida para la determinación del factor a₂₃ sirve el diagrama en la página 45. La zona II del diagrama, que es la más importante en la práctica, vale para limpieza normal (valor básico a_{23II} para s=1).

A mayor o menor grado de limpieza, s>1 o s<1.

Cálculo de vida ampliada

Ratio de viscosidad κ

En el eje de abscisa del diagrama de la página. 45, se indica el ratio de viscosidad κ como la medida para la formación de una película lubricante.

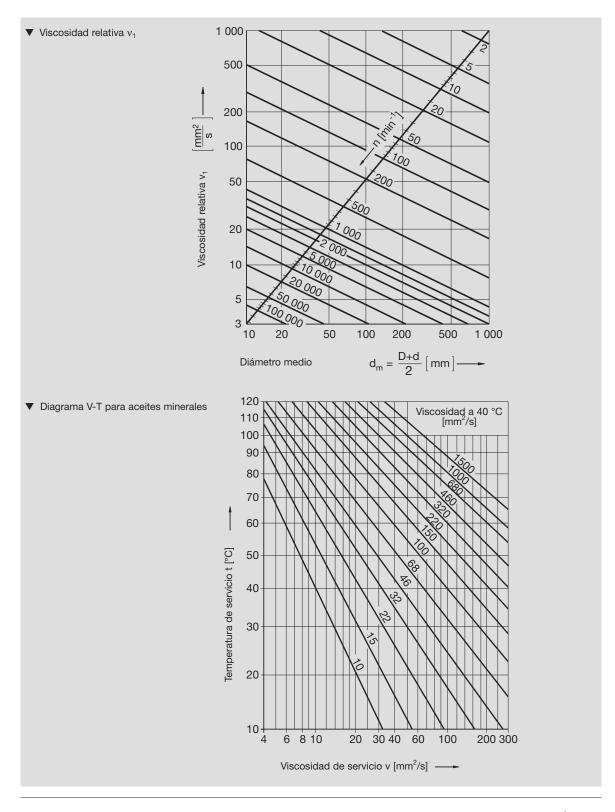
$$\kappa = v/v$$

- v viscosidad de servicio del lubricante en el área de contacto de rodadura
- v₁ viscosidad relativa en función del diámetro y la velocidad

La viscosidad relativa v_1 es determinada a partir del diagrama superior de la página 43 con ayuda del diámetro medio (D + d)/2 y de la velocidad de servicio.

La **viscosidad de servicio** v de un aceite lubricante se obtiene del diagrama de viscosidad – tempe-

ratura (V-T) (diagrama inferior en página 43) en función de la temperatura de servicio t de la viscosidad (nominal) del aceite a 40 °C.


En el caso de las grasas v es la viscosidad de servicio del aceite básico.

Recomendaciones sobre la viscosidad y la elección del aceite se dan en la página 131.

La temperatura en la zona de contacto de los elementos rodantes de rodamientos altamente solicitados con un mayor porcentaje deslizante (fs* < 4) es hasta 20 K mayor que la temperatura medida en el aro estacionario (sin influencia de calentamiento exterior). La diferencia puede considerarse tomando la mitad del valor de la viscosidad de servicio del diagrama V-T para la fórmula $\kappa = v/v_1$.

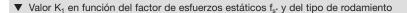
Cálculo de vida ampliada

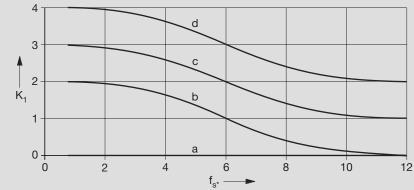
Cálculo de vida ampliada

Factor básico a_{23II}

Para determinar el factor básico a_{23II} en el diagrama de la página 45, se necesita el **valor** $K = K_1 + K_2$.

El valor K_1 puede tomarse del diagrama superior de esta página en función del tipo de rodamiento y del factor de esfuerzos estáticos f_{s^*} .

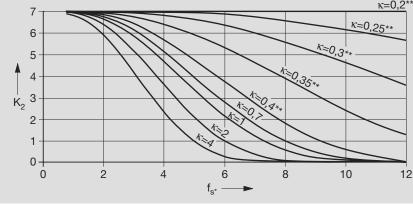

 K_2 depende del ratio de viscosidad κ y del factor f_{s^*} . Los valores del diagrama inferior de esta página valen para lubricantes sin aditivos o para lubricantes con aditivos cuya efectividad en rodamientos no ha sido comprobada. K_2 es igual a 0 para lubricantes con aditivos de probada efectividad


Con K₂ de 0 a 6, a_{23II} se halla en una de las cur-

vas en la zona II del diagrama de la página 45.

Con K > 6 cabe esperarse un factor a_{23II} que se encuentre en la zona III. En tal caso conviene aspirar a un valor K más pequeño y, por lo tanto, en la zona II, mejorando las condiciones.

Si se lubrica con una grasa apropiada y con la cantidad adecuada pueden tomarse lo mismos valores K2 que para aceites con aditivos adecuados. Para rodamientos con un mayor porcentaje deslizante y rodamientos grandes altamente solicitados es muy importante elegir la grasa adecuada. Si no se conoce con exactitud la idoneidad de una grasa ,deberá elegirse un factor a_{23II} del límite inferior de la zona II por motivos de seguridad. Esto se recomienda especialmente en casos en que no pueden mantenerse los intervalos de lubricación estipulados.

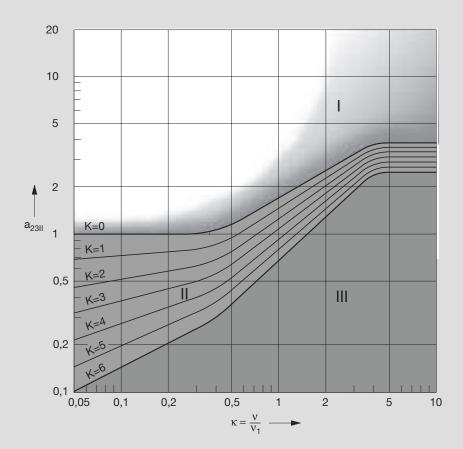


- a Rodamientos de bolas
- b Rodamientos de rodillos cónicos
 Rodamientos de rodillos
 - Rodamientos de rodillos cilíndricos
- c Rodamientos oscilantes de rodillos Rodamientos axiales oscilan-
- tes de rodillos 3) Rodamientos axiales de rodillos cilíndricos 1), 3)
- llos cilíndricos 1), 3) d Rodamientos de rodillos cilíndricos llenos de rodillos 1), 2)
- 1) alcanzable sólo con lubricante filtrado correspondiente a V < 1; en otro caso, deberá tomarse $K_1 \ge 6$.
- 2) al determinar y debe tenerse en cuenta que el rozamiento es por lo menos el doble que en rodamientos con jaula, lo que significa una mayor temperatura del rodamiento.

significa una mayor temperatura del rodamiento.

³⁾ Debe tenerse en cuenta la carga mínima (página 500).

▼ Valor K₂ en función del factor fs* para lubricantes sin aditivos y para lubricantes con aditivos cuya eficacia en rodamien tos no ha sido comprobada


K₂ es igual a 0 para lubricantes con aditivos de probada efectividad

** Con K ≤ 0,4 el desgaste dominará en el rodamiento si no es evitado a través de aditivos apropiados.

Cálculo de vida ampliada

- ▼ factor básico a_{23II} para la determinación del factor a₂₃
 - $k = v / v_1$ ratio de viscosidad
 - v Viscosidad de servicio del lubricante, ver página 42
 - v₁ Viscosidad relativa, ver página 42
 - $K = K_1 + K_2$ valores para determinar el factor básico a_{23II} , ver página 44

Zonas

- Transición al sector de resistencia a la fatiga. Condición previa: máxima limpieza en el intersticio de lubricacióny cargas no muy elevadas, lubricante adecuado.
- II: Limpieza normal en el intersticio de lubricación. (con aditivos eficaces probados en rodamientos se permiten valores $a_{23} > 1$ incluso con k < 0,4)
- III: Condiciones de lubricación desfavorables Lubricante severamente contaminado Lubricantes poco apropiados

Límites del cálculo de vida

Aunque se trate de un cálculo de vida ampliada, en éste únicamente se tiene en cuenta la fatiga del material como causa de fallo. La duración efectiva del rodamiento solamente puede corresponderse a la duración de vida calculada, si por lo menos alcanza la duración de servicio del lubricante o la duración de servicio limitada por el desgaste.

Cálculo de vida ampliada

Factor de limpieza s

El factor s cuantifica los efectos de la contaminación en la vida. Para determinar s se necesita el factor de impurezas V (ver abajo).

Para una limpieza normal (V = 1) siempre vale s = 1, es decir $a_{23II} = a_{23}$.

A elevada limpieza (V = 0,5) y máxima limpieza (V = 0,3) se obtiene un factor $s \ge 1$ del diagrama de la derecha(a) de la página 47, basado en el factor fs^* (ver página 41) y en función del ratio de viscosidad κ .

Siendo $\kappa \le 0.4$, s = 1.

Con V = 2 (moderada contaminación del lubricante) y V = 3 (severa contaminación del lubricante) se obtiene s < 1 del diagrama b en la página 47. La disminución del valor s a través elevados valores V es tanto mayor cuanto menos carga actúe sobre un rodamiento.

Factor de contaminación V para cuantificar la limpieza

El factor de contaminación V depende de la sección transversal del rodamiento, del tipo de contacto entre

las superficies y de la clase de limpieza del aceite.

Si partículas duras de un tamaño definido pasan a la rodadura en el área del contacto más cargada de un rodamiento, las indentaciones resultantes en las superficies del contacto llevan a una fatiga prematura del material. Cuanto más pequeña sea el área del contacto, más dañino el efecto de una partícula de un tamaño definido.

Al mismo nivel de contaminación, los rodamientos pequeños reaccionan, por consiguiente, más sensiblemente que los grandes y rodamientos con contacto puntual (rodamientos de bolas) son más vulnerables que los rodamientos con contacto lineal (rodamientos de rodillos)

La clase de limpieza del aceite requerida según ISO 4406 es una magnitud objetiva para el grado de contaminación de un lubricante. Para determinarla se practica el método normalizado de contar partículas.

El número de todas las partículas > 5 μm y el número de todas las partículas > 15 μm corresponden a una clase de limpieza del aceite.

▼	Valores de	e orientación	para	el factor	de	contaminación '	V
---	------------	---------------	------	-----------	----	-----------------	---

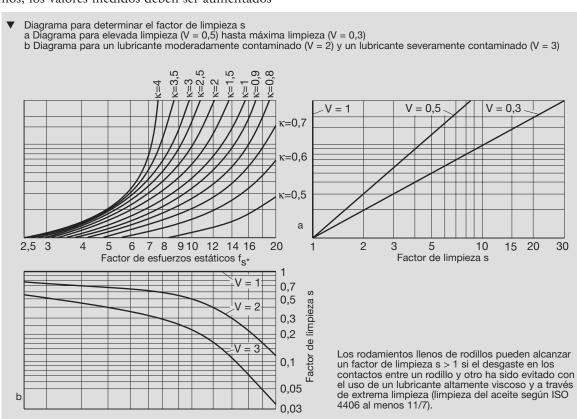
(D-d)/2 mm	V	Clase de limpieza del aceite requerida según ISO 4406 ¹⁾	Valores de orientación para el ratio de filtración según ISO 4572	Clase de limpieza del aceite requerida según ISO 4406 ¹⁾	Valores de orien- tación para el ratio de filtración según ISO 4572
≦ 12,5	0,3 0,5 1 2 3	11/8 12/9 14/11 15/12 16/13	$ \beta_3 \ge 200 \beta_3 \ge 200 \beta_6 \ge 75 \beta_6 \ge 75 \beta_{12} \ge 75 $	12/9 13/10 15/12 16/13 17/14	$eta_3 \ge 200 \ eta_3 \ge 75 \ eta_6 \ge 75 \ eta_{12} \ge 75 \ eta_{25} \ge 75$
> 12,5 20	0,3 0,5 1 2 3	12/9 13/10 15/12 16/13 18/14	$\begin{array}{c} \beta_{3} \geqq 200 \\ \beta_{3} \leqq 75 \\ \beta_{6} \geqq 75 \\ \beta_{12} \geqq 75 \\ \beta_{25} \geqq 75 \end{array}$	13/10 14/11 16/13 17/14 19/15	$ \beta_{3} \ge 75 $ $ \beta_{6} \ge 75 $ $ \beta_{12} \ge 75 $ $ \beta_{25} \ge 75 $ $ \beta_{25} \ge 75 $
> 20 35	0,3 0,5 1 2 3	13/10 14/11 16/13 17/14 19/15	$ \beta_3 \ge 75 \beta_6 \ge 75 \beta_{12} \ge 75 \beta_{25} \ge 75 \beta_{25} \ge 75 $	14/11 15/12 17/14 18/15 20/16	$egin{array}{l} eta_6 & \geq 75 \ eta_6 & \geq 75 \ eta_{12} & \geq 75 \ eta_{25} & \geq 75 \ eta_{25} & \geq 75 \ eta_{25} & \geq 75 \ \end{array}$
> 35	0,3 0,5 1 2 3	14/11 15/12 17/14 18/15 20/16	$egin{array}{l} eta_6 & \geq 75 \ eta_6 & \geq 75 \ eta_{12} & \geq 75 \ eta_{25} & \geq 75 \ eta_{25} & \geq 75 \ eta_{25} & \geq 75 \ \end{array}$	14/11 15/12 18/14 19/16 21/17	$eta_6 \ge 75$ $eta_{12} \ge 75$ $eta_{25} \ge 75$

La clase de limpieza del aceite puede determinarse por medio de las muestras de aceite por fabricantes de filtros e institutos. Es una medida de la probabilidad de reducción de vida las partículas que pasan por el rodamiento. Deben observarse muestras adecuadas (ver p. e. DIN51750). Hoy, están disponibles instrumentos de medición on-line. Las clases de limpieza se alcanzan si el volumen completo de aceite pasa a través del filtro en pocos minutos. Antes de hacer funcionar los rodamientos conviene realizar un lavado para poder asegurar buena limpieza.

Por ejemplo, ratio de filtración β3 ≥ 200 (ISO 4572) significa que en el test multi-pass, de 200 partículas ≥ 3 μm solamente una partícula pasa por el filtro. Filtros con ratios de filtración mayores que β25 ≥ 75 no deben utilizarse por sus efectos dañinos sobre otros componentes en el sistema de la circulación.

1) Sólo deben tenerse en cuenta partículas con una dureza > 50 HRC

Cálculo de vida ampliada


Es decir, una limpieza del aceite de 15/12 según ISO 4406 significa que en cada 100 ml de líquido se cuentan entre 16000 y 32000 partículas > 5 μm y entre 2000 y 4000 partículas > 15 μm . El paso de una clase a la siguiente se efectúa doblando o reduciendo a la mitad el número de partículas.

Las partículas con una dureza > 50 HRC reducen especialmente la vida de los rodamientos. Éstas son partículas de acero endurecido, arena y partículas abrasivas. Las partículas abrasivas son particularmente dañinas.

Si la mayor parte de partículas extrañas en las muestras de aceite están en el rango de dureza de reducción de vida, que es el caso en muchas aplicaciones técnicas, la clase de limpieza determinada con un contador de las partículas puede compararse directamente con los valores de la tabla en página 46. Si después de contar, los contaminantes encontrados son, casi exclusivamente, de mineral como, por ejemplo, arena de moldeo o granos abrasivos particularmente dañinos, los valores medidos deben ser aumentados

en una a dos clases de limpieza antes de determinar el factor de contaminación V. Por otro lado, si la mayor parte de las partículas encontradas en el lubricante son materiales blandos como madera, fibras o pintura, el valor medido del contador de partículas debe reducirse correspondientemente.

= 01				
▼ Clases de limpieza del aceite según ISO 4406 (extractor Número de partículas en cada 100 ml Códig				
Mayores de 5 µm		Mayores de 15 µm		oodigo
más de	hasta	más de	hasta	
500000	1000000	64000	130000	20/17
250000 130000	500000 250000	32000 16000	64000 32000	19/16 18/15
64000 32000 16000	130000 64000 32000	8000 4000 2000	16000 8000 4000	17/14 16/13 15/12
8000 4000 2000	16000 8000 4000	1000 500 250	2000 1000 500	14/11 13/10 12/9
1000 1000 500	2000 2000 1000	130 64 32	250 130 64	11/8 11/7 10/6
250	500	32	64	9/6

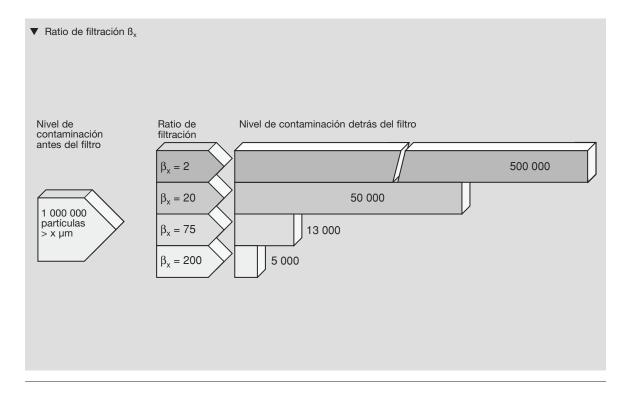
Cálculo de vida ampliada

Para poder alcanzar la clase de limpieza del aceite requerida debe existir un ratio de filtración definido. El ratio de filtración es la medida para la capacidad separadora del filtro para un tamaño definido de partículas. El ratio de filtración β_x es la relación entre todas las partículas > x µm antes de atravesar el filtro y las partículas > x µm que han pasado a través del filtro. Ver esquema abajo.

Un ratio de filtración $\[mathscript{\beta}_3 \ge 200\]$ significa por ejemplo que en el test Multi-pass (ISO 4572) de 200 partículas $\ge 3\]$ µm solamente una sola partícula puede pasar por el filtro.

Utilizar un filtro con un ratio de filtración definido no es automáticamente indicativo de una clase de limpieza del aceite.

Evaluación de la limpieza


Según los conocimientos actuales, es de utilidad la siguiente escala de limpieza (los tres más importantes están en negrita):

- V = 0,3 máxima limpieza
- V = 0,5 elevada limpieza
- V = 1 limpieza normal
- V = 2 lubricante moderadamente contaminado
- V = 3 lubricante severamente contaminado

Máxima limpieza

En la práctica se habla de máxima limpieza cuando

- los rodamientos han sido engrasados y obturados con tapas de obturación o de protección.
 La vida de servicio de estos tipos queda, normalmente, limitada por la vida de servicio del lubricante.
- el usuario lubrica con grasa y procura mantener el nivel de limpieza de los rodamientos nuevos en la condición de suministro durante todo el tiempo de servicio montando los rodamientos bajo excelentes condiciones de limpieza en soportes limpios, lubricando con grasa limpia y tomando medidas que eviten la entrada de suciedad durante el servicio.
- se efectúa un lavado del sistema de circulación de aceite antes de iniciar el servicio de los rodamientos limpiamente montados (utilizar filtros muy finos para el llenado) y se pueden asegurar clases de limpieza del aceite correspondientes a V = 0,3 durante todo el tiempo de servicio, ver tabla en página 46.

Cálculo de vida ampliada

Limpieza normal

Se habla de limpieza normal bajo las siguientes condiciones que se dan con frecuencia:

- buena obturación adaptada a las partes adyacentes
- limpieza durante el montaje
- limpieza del aceite correspondiente a V = 1
- observación de los intervalos de cambio de aceite recomendados

Lubricante severamente contaminado

En esta zona pueden obtenerse factores a_{23} para partículas de suciedad según el factor de contaminación V=3 (ver tabla página 46). ¡Las condiciones de servicio deben mejorarse!

Posibles causas para severa contaminación:

- el soporte de fundición ha sido inadecuadamente o no ha sido limpiado (arena de moldeo, partículas del proceso de mecanizado han quedado en el soporte).
- partículas abrasivas de componentes sujetos a desgaste entran al sistema de circulación de aceite de la máquina.
- partículas extrañas entran al rodamiento a causa de una obturación insuficiente.
- la entrada de agua, también de agua de condensación, produce oxidación estática o deteriora las propiedades del lubricante.

Estas condiciones describen los parámetros básicos del factor de contaminación V que generalmente deben tenerse en cuenta en el cálculo. Los valores intermedios V=0.5 (elevada limpieza) y V=2 (lubricante moderadamente contaminado) sólo deben aplicarse cuando el usuario tiene la experiencia necesaria para juzgar adecuadamente las condiciones de limpieza.

Además ejercen su influencia partículas a través del desgaste. FAG seleccionó el tratamiento térmico de los componentes de rodamientos de tal modo que, en el caso de V = 0,3, rodamientos con un bajo porcentaje de deslizamiento (por ejemplo rodamientos radiales de bolas y de rodillos cilíndricos) apenas presentan señales de desgaste al cabo de períodos de tiempo muy largos.

Los rodamientos axiales de rodillos cilíndricos, los rodamientos de rodillos cilíndricos llenos de rodillos y otros rodamientos con un elevado porcentaje de deslizamiento reaccionan fuertemente ante pequeños contaminantes duros. En

estos casos, un filtraje extremamente fino del lubricante puede evitar el desgaste crítico.

Vida alcanzable bajo condiciones de servicio variables

Si los parámetros de influencia cambian (p.e. la carga, la velocidad, temperatura, limpieza, tipo y calidad de la lubricación), la vida (ampliada) alcanzable (L_{hna1} , L_{hna2} , ...)se calculará individualmente para cada período de servicio q [%] bajo condiciones constantes. La duración de vida alcanzable para todo el tiempo de servicio se calcula mediante la fórmula

$$L_{hna} = \frac{100}{\frac{q_1}{L_{hna1}} + \frac{q_2}{L_{hna2}} + \frac{q_3}{L_{hna3}} + \dots}$$

Límites para el cálculo de vida

Aunque se trate de un cálculo de vida ampliada, únicamente se cuenta con la fatiga del material como causa de fallo. La vida calculada sólo corresponderá con la vida real del rodamiento cuando la vida de servicio del lubricante o la vida limitada por el desgaste no son menores que la vida a fatiga.

Cálculo de rodamientos en el ordenador personal

La versión 1.1 del catálogo electrónico de rodamientos FAG (disponible desde otoño 1999) está basado en este catálogo impreso.

El programa en CD-ROM es aun más eficaz y ventajoso para el usuario. Este es llevado a la mejor solución fiable y rápidamente a través de diálogos y ahorran mucho tiempo y trabajo de otro modo necesario para buscar, seleccionar y calcular rodamientos. Cualquier información puede obtenerse "on-line" en forma de textos, fotografías, dibujos, diagramas, tablas o cuadros animados.

También estará disponible un CD-ROM con el que podrán seleccionarse rodamientos para un apoyo, para un eje o para un sistema de ejes.