

Rodamientos FAG con cuatro caminos de rodadura

FAG | 236

Rodamientos FAG con cuatro caminos de rodadura

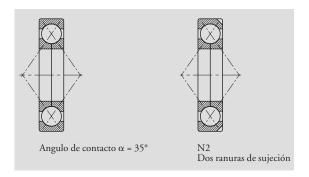
Normas · Ejecución básica · Tolerancias · Juego de los rodamientos · Jaulas · Aptitud para altas velocidades

Los rodamientos con cuatro caminos de rodadura son rodamientos de contacto angular de una hilera que absorben elevadas fuerzas axiales en ambos sentidos y pocas fuerzas radiales. Para cumplir con las exigencias de poco rozamiento, sobre todo a velocidades altas, es necesario una solicitación a carga axial mínima (ver apartado "Carga dinámica equivalente").

El aro interior del rodamiento con cuatro caminos de rodadura está partido, con lo que es posible equipar este rodamiento con una gran cantidad de bolas. El aro exterior con corona de bolas y las mitades del aro interior se montan por separado. La adaptabilidad angular es muy limitada.

Normas

Rodamientos de bolas de contacto angular DIN 628, volumen 4


(Rodamientos con cuatro caminos de rodadura)

Ejecución básica

La alta capacidad de carga en dirección axial se consigue gracias a la gran cantidad de bolas, a la altura de los rebordes de los caminos de rodadura y al ángulo de contacto de 35°.

Los rodamientos con cuatro caminos de rodadura montados como rodamiento axial reciben un ajuste muy holgado en el alojamiento para evitar que se soliciten radialmente.

Para fijar el aro exterior de los rodamientos con cuatro caminos de rodadura más grandes, se dispone de dos ranuras de sujeción (sufijo N2).

Tolerancias

Los rodamientos con cuatro caminos de rodadura se fabrican en la ejecución básica con tolerancia normal. Tolerancias: rodamientos radiales, pág. 56.

Juego de los rodamientos

El diseño básico se fabrica con juego normal. Bajo demanda se suministran rodamientos con un juego mayor (sufijo C3).

Juego axial: rodamientos con cuatro caminos de rodadura, ver página 78.

Jaulas

La mayoría de los rodamientos con cuatro caminos de rodadura están equipados con jaulas macizas de latón (sufijo MPA). Estas jaulas de ventanas están guiadas en el aro exterior.

Los rodamientos con cuatro caminos de rodadura con jaulas de poliamida 66 reforzada con fibra de vidrio tienen el sufijo TVP. Las jaulas de poliamida 66 reforzada con fibra de vidrio soportan temperaturas constantes de hasta 120° C. Al lubricar con aceite aditivado, éste puede perjudicar la vida en servicio de la jaula si la temperatura sobrepasa los 100° C. Un estado envejecido del aceite también puede perjudicar la vida en de servicio de la jaula, por lo cual conviene observar los intervalos recomendados para el cambio de aceite (ver también página 85).

▼ Jaulas estándar de los rodamientos con cuatro caminos de rodadura

Serie Jaula maciza de latón (MPA) Número característico del agujero Jaula de poliamida (TVP)

QJ2 hasta 07, 10, 13, a partir de 16 (QJ3 04, a partir de 10 (

08, 09, 11, 12, 14, 15 05 hasta 09

Bajo demanda también suministramos otras ejecuciones de jaulas. Con tales jaulas la idoneidad para altas velocidades y temperaturas así como las capacidades de carga pueden diferir de los datos indicados para los rodamientos estándar.

Aptitud para altas velocidades

Los rodamientos con cuatro puntos de rodadura alcanzan altas velocidades solamente si se solicitan axialmente. El bosquejo de la norma DIN 732 no indica la velocidad de referencia para estos rodamientos. Por esta razón las tablas solamente indican la velocidad limite, ver página 87. Los valores valen para la lubricación por baño de aceite y solamente pueden ser rebasados después de haber consultado con FAG.

Rodamientos FAG con cuatro caminos de rodadura

Tratamiento térmico · Carga equivalente · Sufijos · Medidas auxiliares

Tratamiento térmico

Los rodamientos FAG con cuatro caminos de rodadura se someten a un tratamiento térmico de manera que se pueden utilizar para temperaturas de servicio de hasta 150° C. Los rodamientos con un diámetro exterior mayor de 240 mm son estables dimensionalmente hasta 200° C. En rodamientos con jaula de poliamida ha de observarse el límite térmico de aplicación del material.

Carga dinámica equivalente

$$P = F_r + 0.66 \cdot F_a$$
 [kN] para $\frac{F_a}{F_r} \le 0.95$

$$P = 0.6 \cdot F_r + 1.07 \cdot F_a$$
 [kN] para $\frac{F_a}{F_r} > 0.95$

Para evitar que el rozamiento en los rodamientos con cuatro caminos de rodadura aumente demasiado, es aconsejable que la carga axial sea tan grande, que el conjunto de bolas se apoye solamente en dos caminos de rodadura, que es el caso cuando $F_a \geqq 1, 2 \cdot F_r$.

Carga estática equivalente

$$P_0 = F_r + 0.58 \cdot F_a$$
 [kN]

Sufijos

MPA Jaula de ventanas maciza de latón,

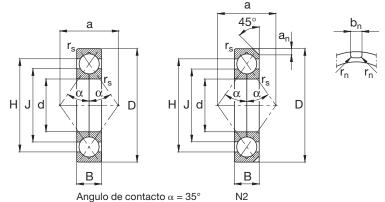
guiada por el aro exterior

N2 Dos ranuras de sujeción

TVP Jaula de ventanas maciza de poliamida

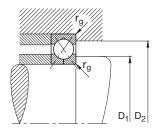
reforzada con fibra de vidrio.

Medidas auxiliares


La altura de resalte de las piezas anexas ha de ser tan grande que quede una superficie de apoyo suficiente, incluso para con el valor máximo del radio del bisel. En las tablas se indican los valores máximos del radio r_g de la garganta y los diámetros de los resaltes.

Rodamientos FAG con cuatro caminos de rodadura

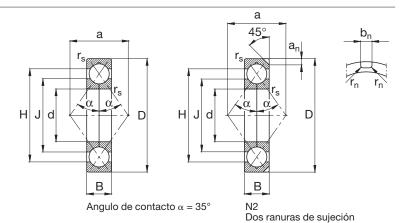
Eje


									D	Dos ranuras de sujeción				
•	Dimen	siones									Peso ≈			
	d	D	В	r _s	Н	J	а	a_n	b_n	r _n				

	d mm	D	В	r _s min	H ≈	J ≈	a ≈	a _n	b _n	r _n	kg
20	20	52	15	1,1	41,4	30,6	26				0,184
25	25 25	52 62	15 17	1 1,1	43,1 49,5	34,2 37,5	27 31				0,171 0,256
30	30 30	62 72	16 19	1 1,1	50,6 58	40,3 44	32 36				0,254 0,379
35	35 35	72 80	17 21	1,1 1,5	59 64,8	47,9 50,7	38 41				0,359 0,504
40	40 40	80 90	18 23	1,1 1,5	66,8 73,3	53,6 56,6	42 46				0,399 0,704
45	45 45	85 100	19 25	1,1 1,5	72 81,7	58,4 63,6	45 51				0,467 0,934
50	<u>50</u> 50	90 110	20 27	1,1 2	76,3 89,5	63,6 70,8	49 56				0,609 1,39
55	<u>55</u> 55	100 120	21 29	1,5 2	84,7 97,8	70,6 77,5	54 61				0,697 1,76
60	60 60	110 130	22 31	1,5 2,1	93 106,9	77,3 84,2	60 67				0,89 2,2
65	65 65	120 140	23 33	1,5 2,1	101,5 114,4	84,1 90,9	65 72				1,27 2,71
70	70 70	125 150	24 35	1,5 2,1	106,3 123,6	89,1 97,6	68 77				1,22 3,29
75	75 75	130 160	25 37	1,5 2,1	111,5 131	94 104,3	72 82	10,1	8,5	2	1,35 3,96
80	<u>80</u> 80	140 170	26 39	2 2,1	119,6 140,8	100,9 110,7	77 88	10,1	8,5	2	1,84 4,65
85	<u>85</u> 85	150 180	28 41	<u>2</u> 3	128,6 148,6	107,5 117,8	82 93	11,7	10,5	2	2,3 5,54

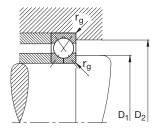
FAG | 240

Los rodamientos pueden alcanzar una duración de vida ilimitada, si $C_0/P_0{\ge}8$, ver Pág.41.



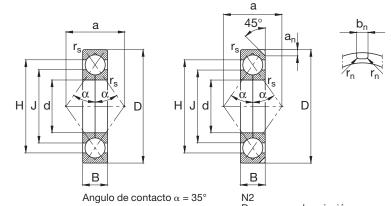
-	ad de carga	Velocidad límite	Denominación abreviada	Medidas auxiliares				
din. C	estát. C ₀		Rodamiento	$D_{\scriptscriptstyle{1}}$	D_2	r _a		
kN	Ü	min ⁻¹	FAG	min mm	max	r _g max		
30	19,6	28000	QJ304MPA	27	45	1		
25,5	18,6	26000	QJ205MPA	31	46	1		
44	31,5	14000	QJ305TVP	32	55			
36,5	27,5	20000	QJ206MPA	36	56	1		
58,5	43	11000	QJ306TVP	37	65			
44	35,5	18000	QJ207MPA	42	65	1		
62	51	9500	QJ307TVP	44	71	1,5		
56	46,5	9500	QJ208TVP	47	73	1		
86,5	68	8500	QJ308TVP	49	81	1,5		
64	57	8500	QJ209TVP	52	78	1		
102	83	7500	QJ309TVP	54	91	1,5		
61	56	13000	QJ210MPA	57	83	1		
110	91,5	11000	QJ310MPA	61	99	2		
80	76,5	7000	QJ211TVP	64	91	1,5		
127	108	10000	QJ311MPA	66	109	2		
96,5	93	6300	QJ212TVP	69	101	1,5		
146	127	9000	QJ312MPA	72	118	2,1		
104	104	9500	QJ213MPA	74	111	1,5		
163	146	8500	QJ313MPA	77	128	2,1		
118	122	5600	QJ214TVP	79	116	1,5		
183	166	8000	QJ314MPA	82	138	2,1		
125	129	5300	QJ215TVP	84	121	1,5		
212	204	7000	QJ315N2MPA	87	148	2,1		
132	137	8000	QJ216MPA	91	129	2		
224	220	7000	QJ316N2MPA	92	158	2,1		
153	160	7000	QJ217MPA	96	139	2		
245	255	6300	QJ317N2MPA	99	166	2,5		

Bajo demanda también son suministrables otras ejecuciones; no duden en contactarnos.


Rodamientos FAG con cuatro caminos de rodadura

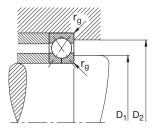
		_				Dos ranuras de sujecion					
Eje	Dimen	siones									Peso ≈
	d	D	В	r _s min	H ≈	J ≈	a ≈	a_n	b_n	r_n	
	mm			min	≈ 	≈ 	≈ 				kg
90	90	160	30 43	2 3	136,1 157,1	114,2 124,5	88	8,1	6,5 10,5	1	2,8
	90	190	43	3	157,1	124,5	98	11,7	10,5	2	6,44
95	95	170	32 45	2,1	144,4 165,4	121	93	8,1 11,7	6,5 10,5	1	3,41
	95	200	45	3	165,4	131,2	103	11,7	10,5	2	7,45
100	100 100	180 215	34 47	2,1 3	153,6 176,6	127,7 138,9	98 110	10,1 11,7	8,5 10,5	2	4,1 9,04
	100	210	71		170,0	100,5	110	11,1	10,0		3,04
105	105	190	36	2,1	161,6	134,7	103	10,1	8,5	2	4,81
110	110	200	38	2,1	169,8	141,6	109	10,1	8,5	2	5,66
	110	240	50	3	195,5	156,4	123	11,7	10,5	2	12,2
120	120	215	40	2,1	183,6	152,8	117	11,7 11,7	10,5 10,5	2	6,74
	120	260	55	3	210,6	169,8	133	11,/	10,5	2	15,6
130	130 130	230 280	40 58	3 4	195 228	165,4 184	127 144	11,7 12,7	10,5 10,5	2	7,66 19,2
	130	200	30	7	220	104	144	12,1	10,5		19,2
140	140 140	250 300	42 62	3 4	210,5 243	180 197	137 154	11,7 12,7	10,5 10,5	2	9,69 23,2
150	150 150	270 320	45 65	3 4	226,7 261	193,7 211,3	147 165	11,7 12,7	10,5 10,5	2	12,2 28
	100						450		10.5		45.0
160	160 160	290 340	48 68	3 4	240 279,9	210 222,7	158 175	12,7 12,7	10,5 10,5	2	15,3 32,8
 170	170	310	52	4	259	221,3	168	12,7	10,5	2	18,9
170	170	360	72	4	292	238	186	12,7	10,5	2	38,4
180	180	320	52	4	269	231	175	12,7	10,5	2 2	19,6
	180	380	75	4	311	231 249,1	196	12,7	10,5 10,5	2	19,6 44,9
190	190 190	340	55 78	4	286,3 327	245,8 262,5	186 207	12,7 12,7	10,5 10,5	2 2	23,8 52,1
	190	400	78	5	327	262,5	207	12,7	10,5	2	52,1
200	200	360	58	4	302	258,6	196	12,7	10,5	2	28

Los rodamientos pueden alcanzar una duración de vida ilimitada, si $C_0/P_0{\ge}8$, ver Pág.41.



	dad de carga	Velocidad límite	Denominación abreviada	Medidas auxiliares				
din. C	estát. C ₀		Rodamiento	D_1	D_2	r _g max		
kN		min ⁻¹	FAG	min mm	max	max		
170	100	7000	O IO4ONONADA	101	140	0		
176 265	186 285	7000 6000	QJ218N2MPA QJ318N2MPA	101 104	149 176	2 2,5		
200	212	6300	QJ219N2MPA	107	158	2.1		
285	310	6000	QJ319N2MPA	109	186	2,1 2,5		
224	240	6000	QJ220N2MPA	112	168	2,1		
325	365	5600	QJ320N2MPA	114	201	2,5		
232	260	6000	QJ221N2MPA	117	178	2,1		
250	285	5600	QJ222N2MPA	122	188	2,1		
345	415	5300	QJ322N2MPA	124	226	2,5		
280	340	5300	QJ224N2MPA	132	203	2,1		
380	480	5000	QJ324N2MPA	134	246	2,5		
290	365	5000	QJ226N2MPA	144	216	2,5		
425	570	4800	QJ326N2MPA	147	263	3		
315 475	415 655	4800 4300	QJ228N2MPA QJ328N2MPA	154 157	236 283	2,5 3		
475	000	4300	QJ3Z6NZWIPA	157	200	<u> </u>		
345 510	480 735	4500 3800	QJ230N2MPA QJ330N2MPA	164 167	256 303	2,5 3		
010	700	0000	QUOUNTA	107	000			
375 585	530 865	4300 3600	QJ232N2MPA QJ332N2MPA	174 177	276 323	2,5 3		
425 585	630 915	3800 3200	QJ234N2MPA QJ334N2MPA	187 187	293 343	3		
400	070			40=				
430 680	670 1080	3600 3000	QJ236N2MPA QJ336N2MPA	197 197	303 363	3		
455	735	3200	QJ238N2MPA	207	323	3		
735	1250	2800	QJ338N2MPA	210	380	4		
510	850	3000	QJ240N2MPA	217	343	3		

Bajo demanda también son suministrables otras ejecuciones; no duden en contactarnos.


Rodamientos FAG con cuatro caminos de rodadura

						, angulo (010 a = 00	Dos ranuras de sujeción			
Eje	Dimer	nsiones									Peso ≈	
	d mm	D	В	r _s min	H ≈	J ≈	a ≈	a _n	b _n	r _n	ka	
											kg	_
220	220 220	400 460	65 88	4 5	336 378	284,6 302	217 238	12,7 15	10,5 12,5	2 2,5	38,6 77	<u> </u>
240	240 240	440 500	72 95	<u>4</u> 5	367 410	312,5 330,7	238 259	15 15	12,5 12,5	2,5 2,5	53,1 98,2	
												<u> </u>
												<u> </u>
												<u> </u>
												<u> </u>

Los rodamientos pueden alcanzar una duración de vida ilimitada, si $C_0/P_0{\ge}8$, ver Pág.41.

dad de carga	Velocidad límite	Denominación abreviada	Medidas auxiliares				
estat. C ₀		Rodamiento	D ₁	D_2	r _g max		
	min ⁻¹	FAG	mm	IIIdx	IIIax		
1120	2800	QJ244N2MPA	237	383	3		
1660	2800	QJ344N2MPA	240	440	4		
1270	2800	QJ248N2MPA	257	423	3		
1960	2600	QJ348N2MPA	260	480	4		
	estát. C ₀	estát. C ₀ min ⁻¹ 1120 2800 1660 2800	estát. C ₀ Rodamiento min ⁻¹ FAG 1120 2800 QJ244N2MPA 1660 2800 QJ344N2MPA	estát. C ₀ Rodamiento D ₁ min min FAG 1120 2800 QJ244N2MPA 237 1660 2800 QJ344N2MPA 240	estát. C ₀ Rodamiento D ₁ min max min-1 FAG D ₂ min max mm 1120 2800 QJ244N2MPA 237 383 1660 2800 QJ344N2MPA 240 440		

Bajo demanda también son suministrables otras ejecuciones; no duden en contactarnos.