Rexroth

Bosch Group

Hitch control valves

EHR5... $Q_{\text {max }}=60 \mathrm{I} / \mathrm{min}$
EHR23... $Q_{\text {max }}=100 \mathrm{I} / \mathrm{min}$

Contents

System description EHR
Page

EHR5-OC 4
EHR5-LS 7
EHR23-EM2, -ERV
9
Installation instruction

Features

- EHR-valves in flange or segmental design
- combinably with directional control valves for working hydraulics
- Applications:
electronic-hydraulic hitch control for tractors, header control for combines.
Hitch control valves for:
position control, draft control, mixed control, pressure- and slip control, as well as active vibration damping (transport mode)

EHR-System

System components

1 Hydraulic pump
(2) Hitch control valve, rear-end

3 Hitch control valve, front
4 Radar velocity sensor
5 Speed sensor
6 Draft sensor
7 Pressure sensor
8 Lift cylinder
9 Position sensor
10 Control panel, rear-end
11 Control panel, front
12 Electronic control unit
13 Rear-end actuation
14 Inductive position sensor

Mode of operation

The hydraulic pump 1 supplies oil to the servo solenoid valve 2 which controls the lift cylinder 8 . The cylinders operate on the linkage to raise, hold or lower the attached implement. The electronic control unit 12 receives the setpoint value via the control panel 10 and the actual values via the sensors 9 and 6 .
The control deviation resulting from the comparison of setpoint and actual value is conditioned in the control unit 12 and then fed to the hitch control valve 2 . The raising and lowering modules are controlled by 2 proportional solenoids.
The following different operating modes can be implemented:

Position control

In this case, the controlled variable is the position of the hitch. The position sensor 9 , which is operated by a cam on the hitch, supplies the feedback signal.

Draft control

In this case, the controlled variable is the force at the trailing linkage. If it can be kept constant, it means that the tractor power is being used optimally, for example when ploughing undulating land and inhomogeneous soil. The feedback signal is supplied by the draft sensors 6 . The draft is adjusted by varying the working depth of the attached implement (e.g. plough).

Mixed control

In this case, the actual values of position and draft are mixed in an adjustable ratio at the control panel and then processed as the controlled variable. Mixed control allows the variations in working depth due to fluctuations in soil resistance, which occur with pure draft control, to be reduced.

Rear-end actuation

The hitch can be raised and lowered using rear-end switch 13 .

Switch-on interlock

Besides its control and actual value conditioning functions, the electronic control unit also incorporates various supervisory circuits. A switch-on interlock prevents the hitch from making any movement when the system is first switched on. The interlock is released the first time the lift switch is operated.

CAN-Bus in the tractor

For years, the amount of electronics in the tractor has been growing steadily. This leads to greater complexity of the electronic functions in the control units, which have to exchange or coordinate their information in order to accomplish their tasks. Here, the transfer of data via the conventional wiring harness has often proven to be unsuitable. A solution is the use of a serial data bus, which achieves a reduction in the wiring harness and connectors.

CAN features:

- Considerably greater functional reliability for all electronic systems.
- High information density and baud rate.
- Link-up enables simultaneous communication between several sensors, control units and display units.
- Internationally recognised standard. ISO 11898 and 11519-2, and SAEJ 1939.
- Less cabling required, which means smaller installation space, lower costs and less susceptibility to interference.
- Interface has greater error tolerance and high interference immunity.
- Optimum diagnostic capabilities thanks to error code output.
- Maximum possible resolution.

Control panels for:

The lift height is also monitored and its liwith can be preselected by means of a potentiometer.
The cable of the position sensor is monitored for open circuits or short circuits and, in the event of a fault, the control unit is tripped so that the hitch cannot move.

Every future-oriented, high-performance electronic concept makes exacting demands for inter-system exchange of information combined with high transmission reliability. A suitable bus system is found in the Controller Area Network (CAN), since it allows equal-access stations to be linked to one another via a serial data bus. A further advantage of CAN over conventional cabling is the fact that any transmission errors which occasionally occur due to electromagnetic interference are detected and automatically corrected through a repeat transmission.

For additional documents, see RE 95337, application software Electrohydraulic hitch control EHR.

EHR5-OC

Hitch control valves

Symbol 1

Technical Data

Design	Proportional valve, single-acting, flange-design
Port connections	Internal thread see table below
Installation position	Axis $\mathrm{Z}-\mathrm{Z}$, max. 30° deviation from the horizontal
Ambient temperature range	$-30 . . .+80^{\circ} \mathrm{C}$
Hydraulic fluid	Hydraulic oils with mineral oil base to DIN/ISO.
	Other, e.g. environmentally friendly fluids, available on request
Viscosity	$10 . . .800 \mathrm{~mm}^{2} / \mathrm{s}$ perwithted range
	$20 . .100 \mathrm{~mm}^{2} / \mathrm{s}$ recommended range $.2000 \mathrm{~mm}^{2} / \mathrm{s}$ perwithted for starting
Fluid temperature range	Operating $20 . . .90^{\circ} \mathrm{C}$, short time $-30 \ldots+100^{\circ} \mathrm{C}$
Filtering	Contamination at least class 19/16 to ISO/DIS 4406 or class 10 to NAS 1638 optained with filter $\beta_{25}=75$
Max. permissible pressure	P: 220 bar, A: 220 bar, R_{1} : max. 5 bar, but smaller than load pressure, R_{2} : max. 10 bar
Rated flow	$Q_{\text {SN }}, Q_{\text {HN }}$ see table below
Load drop at port A	max. $4 \mathrm{~cm}^{3}$ per minute at 125 bar , viscosity $35 \mathrm{~mm}^{2} / \mathrm{s}$
Mode of operation	Direct spool operation by means of proportional solenoids $12 \mathrm{~V}, I_{\text {max }} 3.35 \mathrm{~A}$
Electrical connections	Plug connection 2-pin
Degree of protection	IP 64 A

| Ordering-No. | Drawing-No. | Port connections:
 A | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^0][^1]EHR5-OC

$T=50^{\circ} \mathrm{C}$

EHR5-OC

Subplate

Circuit diagram

	PRV $p[$ bar $]$	kg	
Subplate for EHR5-OC	205^{+10}	1,5	$\mathbf{1 5 2 5 5 0 3 6 4 1}$

EHR5-LS

Hitch control valves

Symbol 1

Symbol 2

1 3-way pressure compensator
2 Raising module
3 Lowering module
(4) Non-return valve

Technical Data

Design Proportional valve, single-acting, flange-design										
Port connections Internal thread see table below										
Installation position Axis $\mathrm{Z}-\mathrm{Z}$, max. 30° deviation from the horizontal										
Ambient temperature range			$-30 . . .+80^{\circ} \mathrm{C}$							
Hydraulic fluid			Hydraulic oils with mineral oil base to DIN/ISO. Other, e.g. environmentally friendly fluids, available on request							
Viscosity			$10 . . .800 \mathrm{~mm}^{2} / \mathrm{s}$ perwithted range $20 \ldots 100 \mathrm{~mm}^{2} / \mathrm{s}$ recommended range .. $2000 \mathrm{~mm}^{2} / \mathrm{s}$ perwithted for starting							
Fluid temperature range			Operating $20 . . .90^{\circ} \mathrm{C}$, short time $-30 . . .+100^{\circ} \mathrm{C}$							
Filtering			Contamination at least class 19/16 to ISO/DIS 4406 or class 10 to NAS 1638 optained with filter $\beta_{25}=75$							
Max. permissible pressure			P: 220 bar, A: 220 bar, R_{1} : max. 5 bar, but smaller than load pressure							
Rated flow			$Q_{\text {SN }}, Q_{\text {HN }}$ see table below							
Load drop at port A m			max. $4 \mathrm{~cm}^{3}$ per minute at 125 bar, viscosity $35 \mathrm{~mm}^{2} / \mathrm{s}$							
Mode of operation			Direct spool operation by means of proportional solenoids $12 \mathrm{~V}, I_{\text {max }} 3.35 \mathrm{~A}$							
Electrical connections			Plug connection 2-pin							
Degree of protection			IP 64 A							
EHR5-LS										
Ordering-No.	Drawing-No.	Port conn A	ections: A^{\prime} in the flange (max. $25 \mathrm{I} / \mathrm{min}$)		\|Thread*)	Lowering Q_{SN} [$/ / \mathrm{min}$]	$\begin{aligned} & \text { Raising } \\ & Q_{\text {HN }} \\ & {[1 / \mathrm{min}]} \end{aligned}$	Emergency manual actuation	Position of solenoid connector	Symb.
0521222101	A 521023727	M22x1.5	x	Flange	II	60	60	with	(1)	2
R 917000664	A 521023735	M 22×1.5	-	Flange	I	20	17	with	(3)	1
R 917000198	A 521023727	M 22×1.5	x	Flange	II	60	60	without	(2)	2
R 917004482	R 917004482	M 22×1.5	x	Flange	II	60	60	without	(1)	2
R 917004951	R 917004951	M 22×1.5	x	Flange	II	60	60	without	(1) + (4)	2
R 917006510	R 917006510	M22x1.5	x	Flange	II	60	60	with	(2)	2

*) Execution I: DIN 3852, part of 1
Execution II: DIN 3852, part of 3, accordingly ISO 6149 (for O-ring sealing)
(1) $=$ As shown, see page 8
(2) R Raising and lowering solenoids turned 90°
(3) $=$ Raising and lowering solenoids turned 60°
(4) $=$ Raising and lowering solenoid connectors with different coding

EHR5-LS

Installation instruction see page 16

Characteristic curves

$\Delta p \mathrm{~A} \rightarrow \mathrm{R}=15$ bar
$T=50^{\circ} \mathrm{C}$

EHR23-EM2, -ERV

Hitch control valves

EM2: direct electromagnetic actuation, proportional ERV: limit control valve

- with flange surface on the 0 -ring side (symbol 6)
- with flange surface opposite the O-ring (symbol 7)

Symbol 1

Symbol 3

Symbol 6, ERV

Technical Data

Design	Proportional valve, single-acting, segmental design
Port connections	Screw-in thread, see pages $10-15$
Installation position	Axis $Z-Z$, max. 30° deviation from the horizontal
Ambient temperature range	$-30 \ldots+80^{\circ} \mathrm{C}$
Hydraulic fluid	Hydraulic oils with mineral oil base to DIN/ISO. Other, e.g. environmentally friendly fluids, available on request
Viscosity	$10 . . .800 \mathrm{~mm}^{2} / \mathrm{s}$ perwithted range $20 . .100 \mathrm{~mm}^{2} / \mathrm{s}$ recommended range ... $2000 \mathrm{~mm}^{2} / \mathrm{s}$ perwithted for starting
Fluid temperature range	Operating $20 . . .90^{\circ} \mathrm{C}$, short time $-30 . . .+100^{\circ} \mathrm{C}$
Filtering	Contamination at least class 19/16 to ISO/DIS 4406 or class 10 to NAS 1638 optained with filter $\beta_{25}=75$
Max. permissible pressure	$\mathrm{P}, \mathrm{Y}: 250 \mathrm{bar}, \mathrm{R}_{1}$: 5 bar, but smaller than load pressure, R : 30 bar
Rated flow	$Q_{\text {SN }}, Q_{\text {HN }}$ see pages 10-15
Load drop at port A	max. $4 \mathrm{~cm}^{3}$ per minute at 125 bar, viscosity $35 \mathrm{~mm}^{2} / \mathrm{s}$
Mode of operation	Direct spool operation by means of proportional solenoids $12 \mathrm{~V}, I_{\text {max }} 3.35 \mathrm{~A}$
Electrical connections	Plug connection 2-pin, except for OBE
Degree of protection	IP 64 A

Ordering-No. Drawing-No.	Port conn A_{1}	(R_{1}	Thread*)	Lowering Q_{SN} [1/min]	$\begin{array}{\|l} \hline \text { Raising } \\ Q_{\mathrm{HN}} \\ {[1 / \mathrm{min}]} \\ \hline \end{array}$	$\begin{aligned} & \hline \text { PRV } \\ & p_{\text {LSV }} \\ & {[\mathrm{bar}]} \end{aligned}$	Emergency manual actuation	Position of solenoid connector	EHS borehole $\left(X_{1}, R_{X}\right)$	$\begin{array}{\|l} \hline \text { Symbol, } \\ \text { see } \\ \text { page 9 } \\ \hline \end{array}$
R 917006918	M22x1.5	M22x1.5	I	65	80	220^{+20}	with	(1)	without	1
R 917005455	M22x1.5	M22x1.5	\|	65	80	$22 \mathrm{O}^{+20}$	with	(1) + (2)	without	1
R 917006003	M22×1.5	M22x1.5	\|	65	50	220^{+20}	with	(2) + (3)	without	1
R 917006449	M22x1.5	M22x1.5	III	65	80	220^{+20}	without	(1)	with	2
R 917005001	M22x1.5	M22x1.5	III	65	100	$203{ }^{+18}$	with	(1)	with	2

*) Execution I: DIN 3852-1
Execution III: EN ISO 6149-1
(1) $=$ As shown
(2) $=$ Raising solenoid connector, towards O-ring side
(3) $=$ Lowering solenoid connector, towards O-ring side

EHR23-EM2

Ordering-No.	Port connections:			Lowering	Raising	PRV	Symbol,
Drawing-No.	A_{2}	R_{1}	Thread*)	$Q_{\text {SN }}$ [$/ / \mathrm{min}]$	Q_{HN} [1/min]	$p_{\text {LSV }}$ [bar]	see page 9
R 917005125	M22x1.5	M22x1.5	III	65	80	$22 \mathrm{O}^{+20}$	3

[^2]EHR23-EM2

Ordering-No. Drawing-No.	Port connections: $\mathrm{A}_{1} \mathrm{~A}_{2}$		R_{1}	Thread $\left.{ }^{*}\right)$	$Q_{\text {SN }}$ $[I / \mathrm{min}]$	Raising $Q_{\text {HN }}$ $[I / \mathrm{min}]$	PRV $p_{\text {LSV }}$ $[$ bar $]$

[^3]EHR23-EM2-ERV, Limit control valve with flange surface on the O-ring side

Ordering-No. Drawing-No.	Port connections: A_{1}			R_{1}	Thread*)	Lowering $Q_{\text {SN }}$ $[1 / \mathrm{min}]$	Raising $Q_{\text {HN }}$ $[1 / \mathrm{min}]$	PRV $p_{\text {LSV }}$ $[\mathrm{bar}]$

*) Execution II: EN ISO 6149-1 (for O-ring sealing)
(1) $=$ As shown
(2) $=$ Direction of the raising and lowering solenoid connectors opposite the flange surface

EHR23-EM2-ERV, Limit control valve with flange surface opposite the O-ring

Ordering-No.	Port connections:			Lowering	Raising	PRV	Position of	Symbol,
Drawing-No.	A_{2}	R_{1}	Thread*)	Q_{SN} [1/min]	Q_{HN} [1/min]	$p_{\text {LSV }}$ [bar]	solenoid connector	see Ppage 9
R 917006959	M22x1.5	Flange	I	65	80	220^{+20}	(1)	7
R 917001441	M22×1.5	Flange	III	65	100	220^{+20}	(2)	7

*) Execution I: DIN 3852-1
Execution III: EN ISO 6149-1 (for O-ring sealing)
(1) $=$ As shown
(2) $=$ Lowering solenoid connector towards line port A_{1}

EHR23-EM2

Characteristic curves
$\Delta p \mathrm{~A} \rightarrow \mathrm{R}=15$ bar $T=50^{\circ} \mathrm{C}$

Installation instruction for hitch control valves EHR5 and EHR23

The valves must be completely filled with hydraulic fluid upon comissioning into service and during operation.
During service, the proportion of dispersed air in the oil must be low, as this may lead to malfunctions and to the hydraulic components.
According to the latest information, proportions of undissolved air in oil within the range of $0.2 \ldots . .0 .5 \%$ by vol. under normal pressure are deemed to be risk-free.
If greater proportions by volume are present, a field test under worst-case conditions must be performed and documented.

Instruction for plug connections

To ensure the reliable function of the plug system, use only Bosch GmbH specified mating plugs.
Customer specified plug system.
The customer is responsible for the function and reliability. Failty plug systems are not guaranteed by Bosch GmbH.
Further information on the correct handling of hydraulic products from Bosch Rexroth can be found in our publication:
Product-specific instructions RE 66 125-B2.
For further information on the properties of the flange mating surface and recommendations for the solenoid mating connector, see notes in the quotation drawings.

Information on the name plate

Bosch Rexroth AG

Hydraulics
Produktbereich Mobile Steuerungen
Robert-Bosch-Straße 2
D-71701 Schwieberdingen
Telefax +49 (0) 711-8115116923
info.brh-stf@boschrexroth.de
www.boschrexroth.com/brm
(c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Traction module RTM (flow divider)

Data sheet

Size 16; 25
Component series 1 X
Nominal pressure 500 bar
Max. flow:

- $160 \mathrm{l} / \mathrm{min}$ (size 16)
- $440 \mathrm{l} / \mathrm{min}$ (size 25)

Table of contents

Contents

Features
Function, section
Technical data
Ordering code
5 to 7
Symbols
8 to 11
Characteristic curves
Application examples
Unit dimensions
Available individual components
12, 13
14 to 19
20 to 25
26

Features

- Protection against overrevving of hydraulic motors in control mode
- Synchronous operation of a maximum of 4 actuators connected in parallel within a wide flow range
- Adjustable dividing accuracy, can be preselected or readjusted by means of proportional orifice
- Double acting (dividing or summating) Ilow divider
- Constant division ratio in the case of summating flow division
- Suitable for open and closed circuits
- 2-, 3- and 4-fold flow division
- Optionally with or without free-wheel operation
- Can be switched in all functions
- Integrated pressure relief/anti-cavitation valves for protecting hoses and preventing cavitation
- Electro-proportional regulation of the metering land

Function, section

1 Housing
2 Meter-in orifice
3 Proportional valve
4.1 Plug screw
(without free-wheel "1")
Version RTM...S2...
4.2 Reducing piece (for free-wheel " 2 ")
5 Pressure compensator
6 Set screw
7 Sleeve
8 Chamber

Traction module RTM

RTM traction modules are flow dividers for controlling the synchronism and free-wheel of hydraulic motors. They can be used for 2-, 3- and 4-wheel drives and can be operated in the open or closed circuit.

Design

The basic components are housing (1), meter-in orifice (2), proportional valve (3), reducing piece (4.2) or plug screw (4.1) and pressure compensator (5).

In housing (1) sleeve (2) is radially fixed by set screw (6), but can also move axially. According to the selected division/summation ratio, metering orifices are integrated in the sleeve, which are used for dividing and directing the outflowing flows into channels A, B, C and D. Pressure compensators (5) are integrated in the various actuator ports to compensate for differences in load pressures.
The main flow flows from P into chamber ($\mathbf{8}$) and shifts control spool (9) against pre-loaded spring (10). This causes the cross-section of the metering orifice to change depending on the amount of flow, and the hydraulic fluid is fed through bores (12) to the spool of pressure compensator

Section A-A (without free-wheel circuit)

9 Control spool
10 Compression spring
11 Spring chamber
12 Bore
$132 / 2$ directional valve
(5) and on to channels A, B, C, and D. If the dividing accuracy is to be increased, the pressure in spring chamber (11) must be increased by energizing proportional valve (3) so that the pressure compensator spool (5) starts to move earlier, and the traction accuracy of the vehicle is increased.
For the automatic change-over from the dividing to the summation function, the $2 / 2$ directional valve (13) moves from the right-hand to the lelt-hand limit stop.
The differential lock can be switched on or off by controlling port "X" by means of an external 3/2 directional valve.

NOTE!

The necessary operating pressure in port \mathbf{X} is the present high pressure in the hydraulic circuit of the RTM. The change-over is performed by means of an external directional valve (separate order).

- X pressureless \rightarrow Iree-wheel, divider deactivated
- X pressurized \rightarrow synchronism, divider activated
- A flushing valve must be provided between the pump and the RTM.
External directional valve: see RE 18136-21
Flushing valve:
see RE 18133-02

Technical data (for applications outside these parameters, please consult us!)

General							
Size		16			25		
Weight		Summation flow division			Summation flow division		
		S2	S3	S4	S2	S3	S4
- Without free-wheel function	kg	14.0	18.2	18.2	29.9	37.4	37.4
- With free-wheel function	kg	14.1	18.3	18.3	30.0	37.5	7.5
Installation orientation		Horizontal					
Type of connection		SAE flange connection					
Base coat (standard)		Contact face mounting					
		RAL 5010					

Hydraulic					
Max. operating pressure in port	- P, A, B, C, D		bar	500	
	- L	p	bar	At zero pressure to ta	
	- $\mathrm{P}_{\mathrm{p}}, \mathrm{S}$	p	bar	40	
Pressure differential		Δp	bar	approx. 2	
Max. flow in port	- P	$q_{4, \text { max }}$	$1 /$ min	80 or 160	220 or 440
Hydraulic fluid				Mineral oil (HL, HLP) Phosphate ester (HF	
Hydraulic fluid temperature range		ϑ	${ }^{\circ} \mathrm{C}$	-20 to +80	
Viscosity range		\checkmark	mm^{2} /s	10 to 380	
Max. permissible degree of contamination of the hydraulic fluid Cleanliness class to ISO 4406 (c)				Class 20/18/15 For this, we recomm $\beta_{0} \geq 75$.	um retention

4/26
 Bosch Rexroth AG

RTM | RE 64592/05.2012

Technical data (for applications outside these parameters, please consult us!)

Electrical, proportional solenoid				
Type of voltage	U		DC voltage	
Supply voltage		V	12 DC	24 DC
Solenoid coil resistance - cold value at $20^{\circ} \mathrm{C}$		Ω	2.3	4.8
- max. hot value		Ω	3.5	7.2
Max. coil temperature ${ }^{\text {1] }}$		${ }^{\circ} \mathrm{C}$	150	
Duty cycle		\%	100	100
Type of protection to VDE 0470-1, DIN 40050-9			IP69K (with plug-in connector mounted and locked)	
Max. control current (nominal current)	1	A	1.76	1.2
Clock frequency	f	Hz	225	

Electrical, switching solenoid

Electrical, control electronics

Control electronics

CAUTION!

When establishing the electrical connection of "K40" properly connect the protective earth conductor (PE $\stackrel{1}{=}$).

NOTE!

Further information about the proper hand ling of hydraulic products of Bosch Rexroth can be found in our brochure "Hydraulic valves for mobile applications general information", RE 64020-B1.

Due to the sulface temperature occurring on the solenoid coil, observe the European standards EN 563 and EN 982!

Modular amplifier VT-MSPA1-100
Plug-in amplifier VT-SSPA1-1.., see RE 30116

Voltage tolerance vs. ambient temperature; duty cycle / proportional solenoid

1 Maximum voltage
2 Duty cycle
3 Minimum operate voltage

Ordering code

With free-wheel function	$=1$
	$=2$

Secondary valves

Standard: Pressure valve with anti-cavitation feature, pressure setting in bar = H...
Plug screw (only for open circuit)
$=Q$
Pressure setting of secondary valve in bar (other values on inquiry)
420 bar
460 bar
CAUTION!
Match pressure setting with travel drive!
Add boost pressure to the pressure setting!
Orifice diameter of fixed orifice, e.g. $F 12=\varnothing 1,2 \mathrm{~mm}$

Operation with adjustable orifice, electro-hydraulic proportional
Operation with adjustable orifice, electro-hydraulic switchable ?)
=F..
= W9
= W 7
Supply voltage
$U=24 \mathrm{~V}^{2)}$
$=1$
$U=12 V^{\text {2 }}$
$=3$

Electrical connection

Connecting plug 02-pin K40 0T04-2PA, make: Deutsch (standard) 2) 3)
Seal material: FKM seals
Line connections: Flange acc. to DIN ISO 6162-2 ${ }^{4)}$
Special configuration

1) Other division ratios on request.
${ }^{2}$ 2) Indication required only in conjunction with electro-proportional oritice (version "P").
${ }^{3)}$ Mating plugs are not included in the scope of supply and must be ordered separately.
4. See pages 20 to 25 .

Supplementary explanations regarding the ordering code with summation flow division RTM...S...

Free-wheel circuit

- Without Iree-wheel circuit ...1...

Free-wheel circuit

- With free-wheel circuit ...2..

Operation by means of external directional valve: X pressureless \rightarrow free-wheel, divider deactivated X pressurized \rightarrow synchronism, divider activated (see note on page 2)

Δp control

- Electro-proportional orilice

Electro-hydraulic proportional operation
Supply voltage 24 V
Supply voltage 12 V
Ordering code: ... P ... W91 or ... P ... W93

- Electrical change-over orifice

Electro-hydraulic proportional operation
Supply voltage 24 V
Supply voltage 12 V
Ordering code: ... P ... W71 or ... P ... W73

Δp control

- Fixed orifice
with orilice diameter of, e.g. 1.2 mm
Ordering code: ... F ... F12

Supplementary explanations regarding the ordering code with summation flow division RTM...S...

Free-wheel circuit | Fixed orifice |
| :--- |

Dividing accuracy: see diagrams on pages 12,13 .

Symbols with summation flow division, without free-wheel circuit - simplified circuit
RTM...S2/P1 2-fold

RTM...S3/P1 3-fold

RTM...S4/P1 4-fold

Symbols with summation flow division, without free-wheel circuit - detailed circuit
RTM...S2/P1 2-fold

RTM...S3/P1 3-fold

RTM...S4/P1 4-fold

Symbols with summation flow division, with free-wheel circuit - simplified circuit

RTM...S2/P2 2-fold

RTM...S3/P2 3-fold

RTM...S4/P2 4-fold

Symbols with summation flow division, with free-wheel circuit - detailed circuit
RTM...S2/P2 2-fold

RTM...S3/P2 3-fold

RTM...S4/P2 4-fold

Characteristic curves (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$; division ratio $\mathrm{A}=50: 50$)
$\Delta p-q_{y}$ characteristic curves (Standard configuration)

Dividing accuracy \boldsymbol{T} at 150 bar pressure difference (Standard configuration)

Flow in limin \rightarrow
Proportional valve energized to max. value ($/=1.8 \mathrm{~A}$ at $12 \mathrm{~V} / 1.2 \mathrm{~A}$ at 24 V) (with fixed orifice $\varnothing 1.2 \mathrm{~mm}$)
—— Proportional valve de-energized ($I=0.0 \mathrm{~A}$)

$$
\text { RTM } 16 \mathrm{~S}\left(q_{V \text { nom }}=160 \mathrm{l} / \mathrm{min}\right)
$$

- $\quad T=$ Deviation of an actuator from the theoretical characteristic curve, with a pressure difference of 150 bar between the actuators, in dependence upon inlet flow $q_{\mathrm{V}, \mathrm{p}}$

Characteristic curves (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$; division ratio $\mathrm{A}=50: 50$)
Dividing accuracy T at 150 bar pressure difference (Standard configuration)

Proportional valve energized to max. value
($I=1.8 \mathrm{~A}$ at $12 \mathrm{~V} / 1.2 \mathrm{~A}$ at 24 V)
(with fixed orifice $\varnothing 1.2 \mathrm{~mm}$)
Proportional valve de-energized ($/=0.0 \mathrm{~A}$)
RTM-25 S $\left(q_{v \text { nom }}=440 \mathrm{l} / \mathrm{min}\right)$

$T=$ Deviation of an actuator from the theoretical characteristic curve, with a pressure difference of 150 bar between the actuators, in dependence upon inlet flow $q_{\text {V, p }}$

Application example: Type RTM..S2

Operational states of the vehicle:

- Stepless, proportional regulation of dividing accuracy
- Without current, extended manoeuvrability
- Max. current, high dividing accuracy

Ordering code:

RTM..S2.1X/..P1H... W9.K40V11

Application example: Type RTM..S2 with free-wheel circuit

Operational states of the vehicle:

Operating position 1

- Stepless, proportional regulation of dividing accuracy
- Without current, extended manoeuvrability
- Max. current, high dividing accuracy

Operating position 2

- Free-wheel, lines to motors Iree
- No flow division

Ordering code:

RTM..S2.1X/...P2H... W9.K40V11

Application example: Type RTM..S3

Operational states of the vehicle:

- Stepless, proportional regulation of the dividing accuracy
- Without current, extended manoeuvrability
- Max. current, high dividing accuracy

Ordering code:

RTM..S3.1X/...P1H... W9.K40V11

Application example: Type RTM..S3 with free-wheel circuit

Operational states of the vehicle:
Operating position 1

- Stepless, proportional regulation of the dividing accuracy
- Without current, extended manoeuvrability
- Max. current, high dividing accuracy

Operating position 2

- Free-wheel, lines to motors Iree
- No flow division

Ordering code:

RTM..S3.1XI...P2H... W9.K40V11

Application example: Type RTM..S4

Operational states of the vehicle:

- Stepless, proportional regulation of the dividing accuracy
- Without current, extended manoeuvrability
- Max. current, high dividing accuracy

Ordering code:

RTM..S4.1X/...P1H... W9.K40V11

Application example: Type RTM..S4 with free-wheel circuit

Operational states of the vehicle:

Operating position 1

- Stepless, proportional regulation of the dividing accuracy
- Without current, extended manoeuvrability
- Max. current, high dividing accuracy

Operating position 2

- Free-wheel, lines to motors Iree
- No flow division

Ordering code:

RTM..S4.1XI...P2H... W9.K40V11

Unit dimensions: RTM 16 S2 (nominal dimensions in mm)

SAE 1/2-6000 PSI

SAE 3/4-6000 PSI
1 Port X only with version P2

> (electro-proportional orifice with free-wheel)

\mathbf{P}	$=$ SAE $3 / 4$	J518 (6000 PSI)
\mathbf{A}, \mathbf{B}	$=$ SAE $1 / 2$	J518 (6000 PSI)
\mathbf{S}	$=$ M18×1.5	RN 115.48
\mathbf{X}	$=$ M14X1.5	ISO 6149

5 Nameplate

Unit dimensions: RTM 16 S3 (nominal dimensions in mm)

Ports:

\mathbf{P}	$=$ SAE $3 / 4$	$\mathrm{~J} 518(6000 \mathrm{PSI})$
$\mathbf{A}, \mathbf{B}, \mathbf{C}$	$=$ SAE $1 / 2$	$\mathrm{~J} 518(6000 \mathrm{PSI})$
$\mathbf{S}, \mathbf{P 1}$	$=$ M18X1.5	RN 115.48
$\mathbf{M A}$	$=$ M14X1.5	ISO 6149
\mathbf{X}	$=$ M14X1.5	

1 Port \mathbf{X} only with version P2
(electro-proportional orilice with free-wheel)
2 Pressure relief/anti-cavitation valve: Material no.: R901069096
Width across flats: $\quad \mathrm{AF}=24 \mathrm{~mm}$
Tightening torque: $\quad M_{\mathrm{T}}=90+9 \mathrm{Nm}$
3 Valve
Width across flats: $\quad A F=27 \mathrm{~mm}$; Tightening torque: $\quad M_{T}=45+5 \mathrm{Nm}$
4 Mating plug 02-pin Deutsch DT06-25WR (not included in the scope of supply; must be ordered separately; Mat. no. R901017846)
5 Nameplate

Unit dimensions: RTM 16 S4 (nominal dimensions in mm)

Unit dimensions: RTM 25 S2 (nominal dimensions in mm)

SAE 1 1/4-6000 PSI

Ports:

\mathbf{P}	$=$ SAE $11 / 4$	$\mathrm{~J} 518(6000 \mathrm{PSI})$
\mathbf{A}, \mathbf{B}	$=$ SAE 3/4	$\mathrm{J} 518(6000 \mathrm{PSI})$
$\mathbf{P 1}$	$=$ M22X1.5	RN 115.48
\mathbf{S}	$=$ M22X1.5	RN 115.48
\mathbf{X}	$=$ M14X1.5	ISO 6149

1 Port X only with version P2 (electro-proportional orifice with free-wheel)
2 Pressure relief/anti-cavitation valve: Material no.: R901079744
Width across flats: $\quad A / F=30 \mathrm{~mm}$ Tightening torque: $\quad M_{\mathrm{T}}=100+10 \mathrm{Nm}$
3 Valve Width across flats: $\quad A / F=27 \mathrm{~mm}$; Tightening torque: $\quad M_{T}=45+5 \mathrm{Nm}$
4 Mating plug 02-pin Deutsch DT06-25WR (not included in the scope of supply; must be ordered separately; Mat. no. R901017846)

5 Nameplate

Unit dimensions: RTM 25 S3 (nominal dimensions in mm)

SAE 1 1/4-6000 PSI

SAE 3/4-6000 PSI

Ports:

\mathbf{P}	$=$ SAE 1 1/4	J518 (6000 PSI)
A, B, C	$=$ SAE 3/4	J518 (6000 PSI)
S, P1	$=$ G 1/2	RN 115.48
MA	$=$ M22X1,5	ISO 6149
\mathbf{X}	$=$ M14X1,5	ISO 6149

1 Port X only with version P2 (electro-proportional orifice with free-wheel)
2 Pressure relief/anti-cavitation valve:
Material no.: R901079744
Width across flats: $\quad A F=30 \mathrm{~mm}$
Tightening torque: $\quad M_{\mathrm{T}}=100+10 \mathrm{Nm}$
3 Valve
Width across flats: $\quad \mathrm{AF}=27 \mathrm{~mm}$;
Tightening torque: $\quad M_{\mathrm{T}}=45+5 \mathrm{Nm}$
4 Mating plug 02-pin Deutsch DT06-25WR
(not included in the scope of supply; must be ordered separately; Mat. no. R901017846)

5 Nameplate

Unit dimensions: RTM 25 S4 (nominal dimensions in mm)

SAE 1 1/4-6000 PSI

SAE 3/4-6000 PSI

51 Port \mathbf{X} only with version P2
(electro-proportional orifice with Iree-wheel)
Ports:

\mathbf{P}	$=$ SAE $11 / 4$	J518 (6000 PSI)
$\mathbf{A}, \mathbf{B}, \mathbf{C}$,	$=$ SAE 3/4	J518 (6000 PSI)
D		
S, P1	$=$ G 1/2	RN 115.48
MA, MB	$=$ M22X1.5	ISO 6149
\mathbf{X}	$=$ M14X1.5	ISO 6149

2 Pressure reliel/anti-cavitation valve:
Material no.: R901079744
Width across flats: $\quad A / F=30 \mathrm{~mm}$ Tightening torque: $\quad M_{\mathrm{T}}=100+10 \mathrm{Nm}$
3 Valve
Width across flats: $\quad \mathrm{A} / \mathrm{F}=27 \mathrm{~mm}$;
Tightening torque: $\quad M_{T}=45+5 \mathrm{Nm}$
4 Mating plug 02-pin Deutsch DT06-25WR
(not included in the scope of supply; must be ordered separately; Mat. no. R901017846)
5 Nameplate

Available individual components

Item	Designation		DC voltage	Material no.
157	Coil for individual connection			
	Proportional solenoid	K40	$\begin{aligned} & 12 \mathrm{~V} \\ & 24 \mathrm{~V} \end{aligned}$	R901003055 R901003053
	Switching solenoid	K40	$\begin{aligned} & 12 \mathrm{~V} \\ & 24 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{R} 900729189 \\ \text { R } 900729190 \\ \hline \end{array}$
158	Nut			R900991453
159	O-ring for pressure tube			R900004280
999	Valve seal kit			R900733593

See also data sheet RE 18136-21.

Bosch Rexroth AG

Mobile Applications
Zum Eisengießer 1 97816 Lohr am Main, Germany Phone $\quad+49$ (0) 9352 /18-0 Fax $\quad+49$ (0) $9352 / 18-2358$ info.brm-mc@boschrexroth.de www.boschrexroth.de

This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. II must be remembered that our products are subject to a natural process of wear and aging Subject to change.

Rexroth
 Bosch Group

Slew drive module

Type MSC

Size 16

Component series 1 X
Maximum operating pressure 350 bar
Rated flow $160 \mathrm{l} / \mathrm{min}$

Table of contents

Contents

Features
Function, control concept
Technical data
Ordering code
Symbol
Mating connector
Characteristic curves
Unit dimensions

Features

System

- Independent, separate control of the supply and discharge flow (meter-in (MI) and meter-out (MO))
- Circulation pressure compensator for load-independent flow control LUDS
- Operation of a holding brake

Control concepts

- Open vario = Controlled supply
- Closed vario = Controlled supply and discharge
- Speed vario = Controlled discharge
- Free swing = Open discharges

Fields of application

Control of slew drives in the open circuit:

- Cranes
- Excavators
- Drilling machinery
- Machinery for forestry

Function

The MSC16 slew drive module contains in a compact form the functions required for actuating slew drives in mobile machines.

Supply and discharge spools are actuated independently. The pressure compensator is located downstream the supply spool. This allows for the realization of different control concepts. Fluctuating or negative loads (e.g. during braking) can be kept under control by means of these control options.
The pressure drops at the metering oriices depend on the pressures occurring during accelerations or decelerations of the rotary movement. Due to the resolution of the control edges, energetically optimized acceleration and cavitation-free deceleration (by hydraulically claiming the motor) of the rotary movement are possible.
By opening the discharge spools, a floating position can be realized without having to renounce the line control at the main spool.
Actuation of the supply spool (1) is effected via the pressure reducing valves (2), control of the discharge via the discharge spools (3) and pressure reducing valves (4) with load-independent flow control (7).
Any unwanted rotation of the upper structure against the pump is prevented by the load-holding valve (9).

Apart Irom that, a primary (5) and a secondary pressure limitation (6) is integrated in the slew drive module.
Optionally, valves for loosening the holding brake (10) ca be extended by a valve (13) for actuating a dynamic brake.
The discharge spools can be designed in the position "normally open" or "normally closed".
Optionally with pilot oil switch-off (12).

Basic actuations:

- Open vario
- Closed vario
- Speed vario
- Free swing
- Special actuations

Thanks to the option of independent supply and discharge spool actuation, the user can program the perlect control concept for the rotary movement, individually for their application.

Control concept during rotation

Control concept	Direction of rotation	Supply spool (MI)	Discharge spool A (left) (MO)	Discharge spool B (right) (MO)
	Clockwise	Proportional right	Closed	Open
	Counterclockwise	Proportional left	Oopen	Closed
Closed vario	Clockwise	Proportional right	Closed	Proportional
	Counterclockwise	Proportional left	Proportional	Closed
Speed vario	Clockwise	Open right	Closed	Proportional
	Ccounterclockwise	Open left	Proportional	Closed
Free swing	-	Closed	Open	Open
Special actuation		Free selection of the supply and discharge spool actuation. Combination of open, closed and speed vario.		

$\begin{array}{ll}\mathrm{MI}=\text { Meter in } & =\text { Supply control } \\ \mathrm{MO}=\text { Meter out } & =\text { Discharge control }\end{array}$

Technical data (For applications outside these parameters, please consult us!)

general

electrical

[^4]Ordering code

Standard types and standard units are contained in the EPS (standard price list).

Ordering code

1) 㕷 Note!

Mating connectors are not included in the scope of delivery and must be ordered separately, see also page 6.

Short type

Complete slew drive modules are defined according to the type code. The order text serves the specily the technical features and requirements. From the order text, the Rexroth distribution organization derives a short type as well as a material number.

Example of an MSC16 short type:

Standard types

MSC-1100-10/1MSC16LUDSG24
MSC-1101-10/1MSC16LUDSG24

Material number

R901267589
R901267592

Ordering code

MSC16-1X/080L090CL180-210-210MZZ04-20Z-G24G4V01 MSC16-1X/160L200CL180-210-210MZZ04-20Z-G24C4V01

Symbol

Ports

P	Pump
A, B	Actuator
T	Tank
X	External load indication
L	Leakage oil
PV	Pilot oil
BR	Braking port
MX	Measuring port Load indication
MP	Measuring port Pump
M1...M4	Measuring port

1 Supply spool
2a, b Proportional valve (actuation supply spool)
3a, b Discharge spool
$\mathbf{4 a}, \mathbf{b}$ Proportional valve (actuation discharge spool)
5 Primary pressure valve supply
6a, b Secondary valve
7 Pressure compensator
8 Damping valve (optional)
9 Load holding valve

13 Optional: Proportional valve dynamic brake

Mating connector

Recommended mating connector for plug-in connector type Junior Timer 2-pin (AMP)

Mating connector for FTDRE... and FTWE... protection class IP 69 K

Material number: R900313533

For litz wire cross-sections from 0.5 to $1 \mathrm{~mm}^{2}$ and for an insulation diameter of the individual seals from 1.2 to 2.1 mm

Material number: R901022127

For litz wire cross-sections from 0.5 to $1 \mathrm{~mm}^{2}$ and for an insulation diameter of the individual seals from 2.2 to 3 mm

啹 Note!

Mating connectors are not included in the scope of delivery and must be ordered separately.

Recommended mating connector for Junior Timer 2-pin (AMP)

Theoretic design characteristic curves

Supply spoal

Spool:
$180 \mathrm{l} / \mathrm{min}$ linear
$2160 \mathrm{l} / \mathrm{min}$ linear

Discharge spool linear, normally closed (standard)

Spool:

$160 \mathrm{l} / \mathrm{min}$
$290 \mathrm{l} / \mathrm{min}$
$3120 \mathrm{l} / \mathrm{min}$
$4200 \mathrm{l} / \mathrm{min}$

Discharge spool linear, normally open

Spool:
$160 \mathrm{l} / \mathrm{min}$
$290 \mathrm{l} / \mathrm{min}$
$3120 \mathrm{l} / \mathrm{min}$
$4160 \mathrm{l} / \mathrm{min}$
$5200 \mathrm{l} / \mathrm{min}$

Unit dimensions: Line connections

\mathbf{P}	G1
\mathbf{T}	G1
A, B	G3/4
\mathbf{X}	$\mathrm{G} 1 / 4$
MX	G1/4
MP	G1/4
M1, M2	G1/4
M3, M4	G1/4
BR	G1/4
PV	G1/4
L	G1/2

\mathbf{P}	$=$ Pump
\mathbf{A}, \mathbf{B}	$=$ Actuator
\mathbf{T}	$=$ Tank
\mathbf{X}	$=$ External load indication
\mathbf{L}	$=$ Leakage oil
$\mathbf{P V}$	$=$ Pilot oil
$\mathbf{B R}$	$=$ Braking port
MX	$=$ Measuring port Load indication
MP	$=$ Measuring port Pump
M1...M4	$=$ Optional: Measuring port override
	(without override function, the ports are closed)

Mounting cavities for pipe fittings with thread according to DIN ISO 228 / DIN 13.

哈 Note!

The subsequent unit dimension serve to describe the product. Technical modifications reserved.
Observe the valid, relevant type-specific installation drawing.

Unit dimensions: Without pilot oil switch-off (dimensions in mm)

Unit dimensions: With pilot oil switch-off (dimensions in mm)

Notes

Bosch Rexroth AG
Mobile Applications
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52/18-0
Fax $\quad+49$ (0) $9352 / 18-2358$
info.brm-mc@boschrexroth.de www.boschrexioth.de
© This document, as well as the data, specifications and other information set torth in it, are the exclusive property of Bosch Rexioth AG. It may not be reploduced or given to third paties without its consent. I he data specitied above serve to describe the product. It there is also information on the use, it is only to be regarded as application examples and proposals.
Catalog information does not constitute warranted properties. The information given does not release the user from the obligation of own judgment and verification. Our products are subject to a natural process of wear and aging.

Rexroth
 Bosch Group

Check-Q-meter

RE 27 551/06.03 1/10

Replaces: 09.97

Type FD

Nominal size 12... 32
Series 2X
Max. Operating pressure 350 bar
Max. Flow 560 L/min

Overview of contents

Contents

Page
Features
1
Functions
Ordering details 2
Symbols 2

Function desctription, section
Circuit examples 3

Technical data
4

Characteristic curves
Unit dimensions

Features

- For installation in manifolds (cartridge valve),
- With SAE flanged ports,
- For subplate mounting, porting pattern to DIN 24 340, form D, ISO 5781 and CETOP-RP 121 H , subplates to catalogue sheet RE 45062 (separate order),
- Use subplate version when valve panel mounting.

Functions

- Pilot operated check valve, leak-free,
- The check- O -meter controls the returning flow $q_{\mathrm{V} 2}$ in relation to the flow being directed into the opposite side of the actuater $q_{\mathrm{V} 1}$. With cylinders the area tratio $\left(q_{\mathrm{V} 2}=q_{\mathrm{V} 1} \cdot \varphi\right)$ has to be taken into account,
- By-pass valve, free-flow in opposite direction,
- Optional built-on secondary pressure relief valve (only for valve with flange connections).

Ordering details

Symbols

Valve type:
FD 12 KA 2X/B03..
FD 16 KA 2X/B03..
FD 25 KA 2X/B04..
FD 32 KA 2X/B06..

Valve type:
FD 12 PA 2X/B03.. FD 12 FA 2X/B03.. FD 16 PA 2X/B03.. FD 16 FA 2X/B03.. FD 25 PA 2X/B04.. FD 25 FA 2X/B04.. FD 32 PA 2X/B06.. FD 32 FA 2X/B06..

With secondary pressure relief valve

Valve type:
FD 12 FB 2XI.B03..
FD 16 FB 2XI.B03..
FD 25 FB 2XI.B04..
FD 32 FB 2XI.B06..

Functional description, section

Check-Q-meters are used in hydraulic systems to influence the speeds of hydraulic motors and cylinders independent of the load (prevents running away). In addition there is an isolator function for pipe burst safety.

The check-Q-meter comprises basically of the housing (1), main poppet (2), pilot part (3), pilot spool (4), damping spool (5) and pilot damping (6).

Lifting the load

With free-flow from A to B the main spool (2) is opened. If the load pressure fails (e.g. pipe break between the directional valve and port A) then the main spool (2) immediately closes. This function is achieved by the connection of the load side (7) with chamber (8).

Lowering the load (circuit examples)

The direction of flow is from B to A. Port A is connected to tank via the directional valve. The piston rod side of the cylinder has a flow applied which corresponds to the working conditions. The relationship between the control pressure at port X and the load pressure at port $\mathrm{B}=1: 20$.
When the control pressure is reached the pre-opening of the main spool takes place. Via the control spool (4) the pilot stage (3) is lifted off its seat and chamber (8) is de-compressed via this drilling and port A to tank. At the same time the load pressure in port B is no longer applied to chamber (8), this is due to the longitudinal movement of the pilot stage (3) within the main spool. The main poppet (2) is thereby unloaded. The reverse side of the control spool (4) at the main poppet (2), lies against the collar of the damping spool (5).

The pressure required at port X to open B to A is now only influenced by the spring in chamber (9). The pressure required to begin opening the connection B to A is 20 bar; to fully open the connection 50 bar is required.

The opening cross-section for flow control increases progressively. It is created by the successive opeining of radial drillings in the bush and the main poppet (2) land.

The relationship between the control pressure, cracking pressure and differential pressure determines the flow to the actuator via the connection of B to A. Thus uncontrolled running away of the actuator is prevented.
The controlled lowering procedure is not affected even if there is a pipe burst between the directional valve and port A .

Guidelines for influencing the opening and closing times of the check-Q-meter.

- Throttling of the opening sequence is via orifice (6) in the control spool (4) and both sides of the damping spool (5). The orifice (6) is protected by sieves.
- The closing movement of the check-Q-meter is virtually unthrottled.
- When being used in conjunction with cylinders the control line to port X can be fitted with a throttle check valve (meterout control) to influence the closing sequence.
- When being used in conjunction with motors a throttle check valve should not be fitted in the control line to port X . In this case it is recommended that the control times of the directional valve are influenced.

Circuit examples

Differential cylinder

On safety grounds, a closed centre directional valve should always be used!

Hydraulic motor

So that the holding brake can operate both of the direction all valve ports have to be connected to port T in the de-energised position. If the brake is externally unloaded then it is possible to use a closed centre directional valve in the de-energised condition.

Note:

Two check-Q-meters cannot be used to control two cylinders which are forced mechanically to move together, as synchronisation and the same pressure cannot be guaranteed in each cylinder.

Therefore, the cylinders have to be equipped with two pilot operated check valves, type SL. The check-Q-meter is fitted in a common line.

In this case, the load pressure must not exceed 200 bar!

Technical Data (For application outside these parameters, please consult us!)

Operating pressure, ports A, X	bar	up to 350
port B	bar	up to 420
Pilot pressure, port X (flow control range)	bar	$\min .20$ to 50, max. 350
Cracking pressure, A to B	bar	2
Setting pressure for secondary pressure relief valve	bar	up to 400
Flow	L/min	80 (size 12), 200 (size 16), 320 (size 25), 560 (size 32)
Area ratio of the pre-opening		$\frac{\text { poppet seat area }}{\text { area of pilot spool }}=\frac{1}{20}$
Pressure fluid		mineral oil to DIN 51524 (HL,HLP); phosphate ester (HFD-R)
Pressure fluid temperature range	${ }^{\circ} \mathrm{C}$	-20 to +80
Viscosity range	$\mathrm{mm}^{2} / \mathrm{s}$	10 to 800
Degree of contamination (maximum permissible		ISO 4406 (C) class 20/18/15

Characteristic curves (measured at $v=41 \mathrm{~mm}^{2}$ and $\vartheta=50^{\circ} \mathrm{C}$)

Unit dimensions: valve for assembly into manifolds (cartridge valve) (Dimensions in mm)

Ports A and B can be optionally arranged about the circumference.

Attention!

The valve fixing holes must not be damaged.
Pipe threads "G" to ISO 228/1

Type	B1	B2	D1	D2	D3	D4	D5	D6	D7	D8	D9	T1	L1	L2	L3	L4	L5	L6
FD 12 KA 2X/...	48	70	54	46	M42x2	38	34	46	38,6	16	M10	16	39	16	32	15,5	50,5	60
FD 16 KA 2X/...	48	70	54	46	M42x2	38	34	46	38,6	16	M10	16	39	16	32	15,5	50,6	60
FD 25 KA 2X/...	56	80	60	54	M52x2	48	40	60	48,6	25	M12	19	50	19	39	22	65	80
FD 32 KA 2X/...	66	95	72	65	M64x2	58	52	74	58,6	30	M16	23	52	19	40	25	71	85

Type	L7	L8	L9	L10	L11	L12	Valvefixing screws/tighteningtorque	$\boldsymbol{M}_{\boldsymbol{A}}$ in Nm	Weight
FD 12 KA 2X/...	3	78	128	2,3	191	65	4 off M10 $\times 70$ DIN $912-10.9$	69	$2,8 \mathrm{~kg}$
FD 16 KA 2X/..	3	78	128	2,3	191	65	4 off M10 $\times 70$ DIN 912-10.9	69	$2,8 \mathrm{~kg}$
FD 25 KA 2X/..	4	105	182	2,3	253	75	4 off M12 $\times 80$ DIN $912-10.9$	120	$5,6 \mathrm{~kg}$
FD 32 KA 2X/...	4	105	198	2,3	289	94	4 off M16 $\times 100$ DIN 912-10.9	295	$7,5 \mathrm{~kg}$

Unit dimensions: for SAE flange connections, without secondary pressure relief valve (Dimensions in mm)

SAE flange connection:
Operating pressure 6000 PSI (420 bar)
Flange mounting screws and blanking flange are included within the scope of supply.

1 Control port
2 Measuring port
3 Flange fixing screws
4 Blanking flange

5 Optional port B
6 Name plate
7 O-ring
Pipe thread "G" to ISO 228/1

Type	B1	B2	B3	B4	D1	D2	D3	D4	D5	H1	H2
FD 12 FA 2X/...	50,8	16,5	72	110	43	18	10,5	18	M10	36	72
FD 16 FA 2X/..	50,8	16,5	72	110	43	18	10,5	18	M10	36	72
FD 25 FA 2X/..	57,2	14,5	90	132	50	25	13,5	25	M12	45	90
FD 32 FA 2X/...	66,7	20	105	154	56	30	15	30	M14	50	105

Type	L1	L2	L3	L4	L5	L6	T1	T2	Weight	O-ring(7)
FD 12 FA 2X/...	39	23,8	105	65	140	78	0,1	15	7 kg	$25 \times 3,5$
FD 16 FA 2X/..	39	23,8	105	65	140	78	0,1	15	7 kg	$25 \times 3,5$
FD 25 FA 2X/..	50	27,8	148	75	200	105	0,1	18	16 kg	$32,92 \times 3,53$
FD 32 FA 2X/..	52	31,6	155	94	215	115	0,1	21	21 kg	$37,7 \times 3,53$

Unit dimensions: for SAE flange connections, with secondary pressure relief valve (Dimensions in mm)

| Type | B1 | B2 | B3 | B4 | B5 | D1 | D2 | D3 | D4 | D5 | D6 | D7 | H1 | H2 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FD 12 FB 2X/... | 50,8 | 47 | 16,5 | 72 | 110 | 43 | 18 | 34 | G $1 / 2$ | 10,5 | 18 | M10 | 36 | 72 |
| FD 16 FB 2X/... | 50,8 | 47 | 16,5 | 72 | 110 | 43 | 18 | 34 | G $1 / 2$ | 10,5 | 18 | M10 | 36 | 72 |
| FD 25 FB 2X/... | 57,2 | 80 | 14,5 | 90 | 132 | 50 | 25 | 42 | G 3/4 | 13,5 | 25 | M12 | 45 | 90 |
| FD 32 FB 2X/... | 66,7 | 80 | 20 | 105 | 154 | 56 | 30 | 42 | G 3/4 | 15 | 30 | M14 | 50 | 105 |
| Type | H3 | L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | T1 | T2 | T3 | Weight | O-ring (7) |
| FD 12 FB 2X/... | 118 | 39 | 23,8 | 105 | 141,5 | 65 | 162 | 38 | 78 | 0,1 | 1 | 15 | 9 kg | $25 \times 3,5$ |
| FD 16 FB 2X/... | 118 | 39 | 23,8 | 105 | 141,5 | 65 | 162 | 38 | 78 | 0,1 | 1 | 15 | 9 kg | $25 \times 3,5$ |
| FD 25 FB 2X/... | 145 | 50 | 27,8 | 148 | 198 | 75 | 225 | 50 | 105 | 0,1 | 1 | 18 | 18 kg | $32,92 \times 3,53$ |
| FD 32 FB 2X/... | 145 | 52 | 31,6 | 155 | 215 | 94 | 240 | 50 | 115 | 0,1 | 1 | 21 | 24 kg | $37,7 \times 3,53$ |

Unit dimensions: for subplate mounting (Dimensions in mm)
size 25
size 32
5
 sizes 12 and 16
G 412/01 (G 3/4)
G 414/01 (G 1 1/4)
G460/0 (G3/8) G 461/01 (G 1/2)
Note!
Required surface finish of mating piece

Only use a sub-plate mounting valve for panel mounting!
1 Control port
4 Not for sizes 12,16 and 25
2 Measuring port
3 Locating pin

Type	B1	B2	B3	H1	H2	H3	L1	L2	L3	L4	L5	L6
FD 12 PA 2X/...	66,7	85	70	85	42,5	70	31,8	7,2	-	35,8	42,9	73,2
FD 16 PA 2X/...	66,7	85	70	85	42,5	70	31,8	7,2	-	35,8	42,9	73,2
FD 25 PA 2X/...	79,4	100	80	100	50	80	38,9	11,1	-	49,2	60,3	109,1
FD 32 PA 2X/...	96,8	120	95	120	60	95	35,3	16,7	42,1	67,5	84,2	119,7
Type	L7	L8	Valvefixing screws/tightening torque						$M_{\text {A }}$ in Nm	Weight	O-ring (7)	
FD 12 PA 2X/...	65	140	4 off M10 $\times 100$ DIN 912-10.9						75	9 kg	$21,3 \times 2,4$	
FD 16 PA 2X/...	65	140	4 off M10 $\times 100$ DIN 912-10.9						75	9 kg	$21,3 \times 2,4$	
FD 25 PA 2X/...	75	200	4 off M10 x 120 DIN 912-10.9						75	18 kg	$29,82 \times 2,62$	
FD 32 PA 2X/...	94	215	6 off M10 x 140 DIN 912-10.9						75	24 kg	38×3	

Notes

Bosch Rexroth AG
Mobile Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 93 52-18 0
Telefax +49 (0) 93 52-18 2358 documentation@boschrexroth.de www.boschrexroth.de

[^5]
Rexroth

Bosch Group

Stabilising module

RE 64614/07.04

Type RSM2

Nominal size 10
Component series 2X
Maximum operating pressure:

- Actuator connections A, B

420 bar

- Accumulator connection X 350 bar

Nominal flow $80 \mathrm{~L} / \mathrm{min}$

Overview of contents

Contents

Features
Ordering details
Function, circuit 2

Parking the vehicle, maintenance and service work
Regulatory requirements and safety guidelines
Installation guidelines
Technical data
Characteristice curves
Unit dimensions

Features

The RSM2 stabilising module reduces pitching movements on wheeled vehicles that effect the vehicle and driver. For this the lifting line is connected to a hydro-pneumatic accumulator, via a switching valve, that absorbs the loads caused by the pitching movements.
3 Applications:
3 - Wheeled loaders

- Telescopic handlers

3 The following advantages apply when the RSM2 system is
4 fitted:
5 - Higher transport speeds

- Higher handling rates
- Stable steering characteristics
- Shorter braking distances
- Higher comfort for the driver
- Lower mechanical loading of the entire machine
- Fewer repairs or down times with identical handling rates

Ordering details

Function, circuit

Design

The stabilising module (1) basically comprises of a housing into which are built:

- Valve spool (2)
- 3/2-way directional valve, solenoid operated (3)
- Pressure relief valve (4)
- Emergency drain screw (5)
- Accumulator loading valve (6)

The damping valve can be automatically activated via the travel speed. The $3 / 2$-way directional valve (3) is switched into the switched position 2 . The valve spool (2) is switched to the switched position 2 and connects the piston side of the lifting cylinder (7) with the accumulator (8) as well as the rod side of the lifting cylinder (7) to tank.
The pressure relief valve (4) prevents unpermissible high pressures in the accumulator.
(Set pressure < permissible accumulator pressure).

Function

If the lifting cylinder (7) has pressure applied to the piston side then pressure is also applied to the accumulator loading valve (6) as well as the accumulator (8).

The loading and unloading speed of the accumulator is defined via the selectable orifice cross-sections on the accumulator loading valve (6).

Parking the vehicle, maintenance and service work

Via the emergency drain screw (5) (shown in the circuit as a mechanically operated $2 / 2$-way directional valve) it is possible to unload the accumulator so that the above mentioned work can be carried out.
The accumulator loading orifice components are subject to

Regularity requirements and safety guidelines

Accumulators are required for the RSM2 stabilisation system. If, due to the operation situation of the machine, the danger exsists that the accumulator's permissible pressure limit can be exceeded, then a pressure relief valve has to be fitted. For this system regularity requirements and those from the authorities may have to be complied with.
For this purpose the RSM2 is fitted with a pressure relief valve. This can also be a design tested valve which complies with the pressure component directive 97/23/EC (see ordering details).
a degree of wear. They should be checked and if necessary replaced after approx. 200.000 load cycles.

© Attention:

The safety technical requirements of the vehicle have to be taken into account! The lifting system must firstly be secured against lowering.

Installation guidelines

- The number of accumulators is dependent on the lifting cylinder size. Accumulators have to be ordered separately.
- The pressure relief setting (safety valve for the pressure vessel), must be lower than the permissible accumulator pressure.

If a RSM2 is ordered without a pressure relief valve (example: RSM2-10 B2X/A000...), Rexroth assumes that the appropriate pressure safety function has been foreseen by the vehicle manufacturer or that accumulator pressure overloads are prevented in a different manner within the vehicle's design. In addition for the vehicle other national and international regulations may apply.
The entire responsibility lies with the vehicle manufacturer.

© Attention:

- Before carrying out any maintenance work the accumulators must be unloaded (zero pressure).
- For this, unscrew the plug then rotate the valve spindle, loacated under the plug (BA / F), 2 turns anti-clockwise. The lifting system must firstly be secured against lowering.

Technical data (for applications outside these parameters, please consult us!)

General

Installation		Optional
Ambient temperature range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+80$
Weight	kg	4.7
Hydraulic		
Operating pressure	Ports A, B bar	420
	Port X bar	350
	Port T bar	30
Max. nominal flow	Ports A, X L/min	80
Pressure fluid		Mineral oil (HL, HLP) to DIN 51524; Other pressure fluids on request!
Pressure fluid temperature range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+80$
Viscosity range	$\mathrm{mm} 2 / \mathrm{s}$	10...380
Max. permissible degree of pressure fluid contamination Cleanliness class to ISO 4406 (c)		Class 20/18/15

Electrical

Control voltage	V	$12 ; 24$
Power consumption (solenoid)	W	14.4

Characteristic curves (measured with HLP68, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

$\Delta p-q_{v}$-characteristic curves for selecting the accumulator loading orifice

Unit dimensions (in mm)

Notes

Bosch Roxroth AG
Mobile Applications
Zum Eisengießer 1
97816 Lohr an Main, Germany
Teleton +49 (0) 93 52-18 0
Telefax +49 (0) 93 52-18 2358
info.brm-no@boschrexroth.de
wwwboschrexrolh.com/brm
© This document, as well as the data, specifications and other informations set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suilability for a certain application can be derived from our intormation. The given information does not release the user from the obligation of own judge ment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth
 Bosch Group

Stabilising module

Type RSM2

Nominal size 16
Component series 2 X
Maximum operating pressure:

- Actuator connections A, B 420 bar
- Accumulator connection X2 350 bar

Nominal flow $150 \mathrm{~L} / \mathrm{min}$

Overview of contents

Contents

Features
Ordering details

,

Function, circuit 2

Parking the vehicle, maintenance and service work
Regulatory requirements and safety guidelines
Installation guidelines
Technical data
Characteristic curves
Unit dimensions

Features

The RSM2 stabilising module reduces pitching movements on wheeled vehicles that effect the vehicle and driver. For this the lifting line is connected to a hydro-pneumatic accumulator, via a switching valve, that absorbs the loads caused by the pitching movements.
3 Applications:
3 - Wheeled loaders

- Telescopic handlers

3 The following advantages apply when the RSM2 system is 4 fitted:

4 - Higher transport speeds

- Higher handling rates
- Stable steering characteristics
- Shorter braking distances
- Higher comfort for the driver
- Lower mechanical loading of the entire machine
- Fewer repairs or down times with identical handling rates

Ordering details

Function, circuit

Design

The stabilising module basically comprises of a housing into which are built:

- Valve spool (2)
- 3/2-way directional valve, solenoid operated (3)
- Pressure relief valve (EC design tested) (4)
- Emergency drain screw (5)

Function

If the lifting cylinder (7) has pressure applied to the piston side, then the pressure is also applied to the check valve in the valve spool (2) and the accumulator (6).
Dependent on the design (see ordering details)
...B090 -> from 90 bar, ...B120 -> from 120 bar or ...B160 -> from 160 bar
the connection from the lifting cylinder (7) to the accumulator (6) via the valve spool (2) is interrupted (switched position 2).

A pressure reducing function for the accumulator (6) is integrated in the valve spool (2) (switched position 3). The opening pressure lies approx. 30 bar higher than the switch off pressure (switched position 2).

The damping valve can be automatically activated via the travel speed. The $3 / 2$-way directional valve (3) is switched into the switched position 2. The valve spool (2) is switched to the switched position 4 and connects the piston side of the lifting cylinder (7) with the accumulator (6) as well as the rod side of the lifting cylinder (7) with the reservoir. The pressure relief valve (4) prevents unper missible high pressures in the accumulator (opening pressure < permissible accumulator pressure).

Parking the vehicle, maintenance and service work

Via the emergency drain screw (5) (shown in the circuit as a mechanically operated $2 / 2$-way directional valve) it is possible to unload the accumulator so that the above mentioned work can be carried out.
\triangle Attention:
The safety technical requirements of the vehicle have to be taken into account!
The lifting system must firstly be secured against lowering.

Regularity requirements and safety guidelines

Accumulators are required for the RSM2 stabilisation system. If, due to the operation situation of the machine, the danger exsists that the accumulator's permissible pressure limit can be exceeded, then a pressure relief valve has to be fitted. For this system regularity requirements and those from the authorities have to be complied with.
The RSM2 is fitted with a design tested pressure relief valve which complies with the pressure component directive 97/23/EC.

If a RSM2 is ordered without a pressure relief valve (example: RSM2-16 B2X/A000...), Rexroth assumes that the appropriate pressure safety function has been foreseen by the vehicle manufacturer or that accumulator pressure overloads are prevented in a different manner within the vehicle's design. In addition for the vehicle other national and international regulations may apply.
The entire responsibility lies with the vehicle manufacturer.

Installation guidelines

- The number of accumulators is dependent on the lifting cylinder size. Accumulators have to be ordered separately.
- The pressure relief setting (safety valve for the pressure vessel) must be lower than the permissible accumulator pressure.

\triangle Attention:

- Before carrying out any maintenance work the accumulators must be unloaded (zero pressure).
- For this, unscrew the plug then rotate the valve spindle, located under the plug ($3 \mathrm{~A} / \mathrm{F}$), 2 turns anti-clockwise.
- The lifting system must firstly be secured against lowering.

Technical data (for applications outside these parameters, please consult us!)

General

Installation		Optional
Ambient temperature range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+80$
Weight	kg	15

Hydraulic

Operating pressure	Ports A, B	bar	420
	Port X2	bar	350
	Port T	bar	30
Max. nominal flow	Ports A, X2	L/min	150
Pressure fluid			Mineral oil (HL, HLP) to DIN 51 524; Other pressure fluids on request!
Pressure fluid temperature range		${ }^{\circ} \mathrm{C}$	$-20 \ldots+80$
Viscosity range		$\mathrm{mm}^{2} / \mathrm{s}$	10.. 380
Degree of contamination (max. pe	rmissible)		ISO 4406 (c) class 20/48/15

Electrical

Control voltage	V	$12 ; 24$
Power consumption (solenoid)	W	14.4

Characteristic curves (measured with HLP68, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Bosch Rexroth AG
Mobile Applications
Zum Eisengießer 1
97816 Lohr an Main, Germany
Teleton +49 (0) 93 52-18 0
Telefax +49 (0) $9352-182358$ info.brm-nc@boschrexroth.de www.boschrexroth.com/brm
(c) This document, as woll as the data, specifications and other informations set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements conceming a certain condition or suitability for a certain application can be derived from our information. The given information does nol release the user from the obligation of own judgement and verification. It must be remembered that or products are subject to a natural process of wear and aging. Subject to change.

Rexroth
 Bosch Group

Stabilising module

RE 64618/05.04

Type RSM2

Nominal size 25
Component series 2 X
Maximum operating pressure:

- Actuator connections A, B 420 bar
- Accumulator connections X1, X2 350 bar

Nominal flow $300 \mathrm{~L} / \mathrm{min}$

Overview of contents

Contents

Features
Ordering details

,

Function, circuit 2

Parking the vehicle, maintenance and service work
Regulatory requirements and safety guidelines
Installation guidelines
Technical data
Characteristic curves
Unit dimensions

Features

The RSM2 stabilising module reduces pitching movements on wheeled vehicles that effect the vehicle and driver. For this the lifting line is connected to the hydro-pneumatic accumulator, via a switching valve, that absorbs the loads caused by the pitching movements.
3 Applications:
3 - Wheeled loaders

- Telescopic handlers

3 The following advantages apply when the RSM2 system is
4 fitted:
4 - Higher transport speeds

- Higher handling rates
- Stable steering characteristics
- Shorter braking distances
- Higher comfort for the driver
- Lower mechanical loading of the entire machine
- Fewer repairs or down times with identical handling times

Ordering details

Function, circuit

Design

The stabilising module basically comprises of a housing into which are built:

- Valve spool (2)
- 3/2-way directional valve, solenoid operated (3)
- Pressure relief valve (EC design tested) (4)
- Emergency drain screw (5)

Function

If the lifting cylinder (7) has pressure applied to the piston side, then the pressure is also applied to the check valve in the valve spool (2) and the accumulator (6).
Dependent on the design (see ordering details)
...B090 -> from 90 bar, ...B120 -> from 120 bar or ...B160 -> from 160 bar
the connection from the lifting cylinder (7) to the accumulator (6) via the valve spool (2) is interrupted (switched position 2).

A pressure reducing function for the accumulator (6) is integrated in the valve spool (2) (switched position 3). The opening pressure lies approx. 30 bar higher than the switch off pressure (switched position 2).

The damping valve can be automatically activated via the travel speed. The $3 / 2$-way directional valve (3) is switched into the switched position 2. The valve spool (2) is switched to the switched position 4 and connects the piston side of the lifting cylinder (7) with the accumulator (6) as well as the rod side of the lifting cylinder (7) with the reservoir:
The pressure relief valve (4) prevents unpermissible high pressures in the accumulator (opening pressure < permissible accumulator pressure).

Lifting cylinder

6

Parking the vehicle, maintenance and service work

Via the emergency drain screw (5) (shown in the circuit as a mechanically operated 2/2-way directional valve) it is possible to unload the accumulator so that the above mentioned work can be carried out.

4 Attention:

The safety technical requirements of the vehicle have to be taken into account!
The lifting system must firstly be secured against lowering.

Regularity requirements and safety guidelines

Accumulators are required for the RSM2 stabilisation system. If, due to the operation situation of the machine, the danger exsists that the accumulator's permissible pressure limit can be exceeded, then a pressure relief valve has to be fitted. For this system regularity requirements and those from the authorities have to be complied with.
The RSM2 is fitted with a design tested pressure relief valve which complies with the pressure component directive 97/23/EC.

If a RSM2 is ordered without a pressure relief valve (example: RSM2-25 B2X/A000...), Rexroth assumes that the appropriate pressure safety function has been foreseen by the vehicle manufacturer or that accumulator pressure overloads are prevented in a different manner within the vehicle's design. In addition for the vehicle other national and international regulations may apply.
The entire responsibility lies with the vehicle manufacturer.

Installation guidelines

- The number of accumulators is dependent on the lifting cylinder size. Accumulators have to be ordered separately.
- The pressure relief setting (safety valve for the pressure vessel) must be lower than the permissible accumulator.

\triangle Attention:

- Before carrying out any maintenance work the accumulators must be unloaded (zero pressure).
- For this, unscrew the plug then rotate the valve spindle, located under the plug (3 A/F), 2 turns anti-clockwise.
- The lifting system must firstly be secured against lowering.

Technical data (for application outside these parameters, please consult us!)

General

Installation		Optional
Ambient temperature range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+80$
Weight	kg	27.5

Hydraulic

Operating pressure	Ports A, B	bar
	Port X	bar
	Port T	350
Max. nominal flow	Ports A, X	L/min
Pressure fluid	300	
Pressure fluid temperature range		Mineral oil (HL, HLP) to DIN 51 524; Other pressure fluids on request!
Viscosity range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+80$
Degree of contamination (max. permissible)	$\mathrm{mm}^{2} / \mathrm{s}$	$10 \ldots 380$

Electrical

Control voltage	V	24
Power consumption (solenoid)	W	14.4

Characteristic curves (measured with HLP68, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Unit dimensions (in mm)

Bosch Rexroth AG
Mobile Applications
Zum Eisengießer 1
97816 Lohr an Main, Germany
Teleton +49 (0) 93 52-18 0
Teletax +49 (0) $9352-182358$
infobrm-no@boschrexroth.de wwwboschrexroth.com/brm
(c) This document, as woll as the data, specifications and other informations sel forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements conceming a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that or products are subjoct to a natural process of wear and aging. Subject to change.

Rexroth
 Bosch Group

Multi-way directional valves (hydraulic switches) MH.W...AG

Data sheet

Sizes 6, 20 and 30
Component series 2 X
Operating pressure max. 350 bar

Content analysis

Content

Characteristics
Function
Overview table of available models
Operating Curves
Unit Dimensions:

- Size 6 3
- Size 20
- Size 30

Caracteristics

- Direct or pilot operated
- 2 types of actuator
(hydraulic and electrical)
- With spring return

Function

The $6 / 2$-way valves are hydraulically or electrically actuated directional spool valves.
They control the starting, stopping and direction of a flow.
In general, these valves are used as an extension to a mobile control block instead of fitting an extra section. The following overview table shows the models available.
Deviating variants on request.

Overview table of available models

Size	Material No.	Type	Symbol	Actuation/voltage switching pressure $p_{\text {pilot min }}$ pilot pressure $p_{\text {pilot max }}$
6	R901058030	MH7WE 06 AG2X/EG24N9M01		direct actuated, electrical $24 \mathrm{~V}=$
	R901058029	MH7WE 06 AG2X/EG12N9M01		direct actuated, electrical $12 \mathrm{~V}=$
	R901058035	MH6WE 06 AG2X/LEG24N9M01		direct actuated, electrical $24 \mathrm{~V}=$
	R901058036	MH6WE 06 AG2X/LEG12N9M01		direct actuated, electrical $12 \mathrm{~V}=$
20	R901094340	MH6WH 22 AG2X/003V01		hydraulic, with spring return $\begin{aligned} & p_{\text {pilot } \min }=4.5 \mathrm{bar} \\ & p_{\text {pilot } \max }=30 \mathrm{bar} \end{aligned}$
	R901094341 R901094342 R901094343 R901094344	MH6WW 22 AG2X/030L2G24C4V11 MH6WW 22 AG2X/030L2G24C4V01 MH6WW 22 AG2X/030L2G12C4V11 MH6WW 22 AG2X/030L2G12C4V01		pilot operated, electrical $24 \mathrm{~V}=$ $\begin{aligned} & p_{\text {pilot } \min }=3.5 \mathrm{bar} \\ & p_{\text {pilot } \max }=30 \mathrm{bar} \end{aligned}$
	R901061669	MH6WH 32 AG2X/003M11		hydraulic, with spring return $\begin{aligned} & p_{\text {pilot } \min }=4.5 \mathrm{bar} \\ & p_{\text {pilot } \max }=30 \mathrm{bar} \end{aligned}$
30	R901061670	MH6WW 32 AG2X/L4AG24C4M11		pilot operated, electrical $24 \mathrm{~V}=$ $\begin{aligned} & p_{\text {pilot } \min }=3.5 \mathrm{bar} \\ & p_{\text {pilot } \max }=30 \mathrm{bar} \end{aligned}$

$\Delta p-q_{\mathrm{v}}$-curves (measured at $v=41 \mathrm{~mm}^{2} / \mathrm{s}$ and $9=50^{\circ} \mathrm{C}$)

Unit dimensions: size 6 (Dimensions in mm)

Type MH7WE 06 AG2X/EG..N9M01

Material-No. R901058030 ($24 \mathrm{~V}=$)
R901058029 ($12 \mathrm{~V}=$)

Type MH6WE 06 AG2X/LEG..N9M01
Material-No. R901058035 ($24 \mathrm{~V}=$)
R901058036 ($12 \mathrm{~V}=$)

1 Ports

> A, B, C, D, E, F and T
> $=$ G $1 / 4$ to ISO $228 / 1$

2 Plug-in connector
3 Space required to remove plug-in connector

4 Nameplate

Unit dimensions: size 20 (Dimensions in mm)

Type MH6WH 22 AG2X/003V01
Material-No. R901094340

1 Ports
$\mathrm{A}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B}, \mathrm{~B} 1$ and B2
=G 1 to ISO 228/1
$\mathrm{p}_{\text {pilot }}$ and $\mathrm{L}=\mathrm{G} 1 / 4$ to ISO 228/1
2 Nameplate

Unit dimensions: size 20 (Dimensions in mm)

Type MH6WW 22 AG2X/030L2G ${ }_{24}^{12}$ C4V01
Material-No. R901094342 (24V=)
Material-No. R901094344 (12V =)

1 Ports
A, A1, A2, B, B1 and B2
= G 1 to ISO 228/1
$p_{\text {pilot }}$ and $L=G 1 / 4$ to ISO 228/1
2 Nameplate

Unit dimensions: size 20 (Dimensions in mm)
Typ MH6WW 22 AG2X/03OL2G ${ }_{24}^{12} \mathrm{C} 4 \mathrm{~V} 11$
Material-Nr. R901094341 ($24 \mathrm{~V}=$)
Material-Nr. R901094343 (12V =)

1 Ports

$\mathrm{A}, \mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B}, \mathrm{~B} 1$ und B 2
$=$ SAE 1 to J 518 (6000 PSI)
p_{St} and $\mathrm{L}=\mathrm{G} 1 / 4$ to $\mathrm{ISO} 228 / 1$
2 Nameplate

Unit dimensions: size $\mathbf{3 0}$ (Dimensions in mm)

Type MH6WH 32 AG2X/003M11
Material-No. R901061669

1 Ports
A, A1, A2, B, B1 and B2
$=$ SAE $11 / 4$ to $J 518$ (6000 PSI)
$\mathrm{p}_{\text {pilot }}$ and $\mathrm{L}=\mathrm{G} 1 / 4$ to ISO 228/4
2 Nameplate

Unit dimensions: size 30 (Dimensions in mm)
Type MH6WW 32 AG2X/L4AG24C4M11
Material-No. R901061670

1 Ports
A, A1, A2, B, B1 and B2
$=$ SAE $11 / 4$ to J 518 (6000 PSI)
$p_{\text {pilot }}$ and $L=G 1 / 4$ to $\operatorname{ISO} 228 / 1$
2 Nameplate

Bosch Rexroth AG
Mobile Applications
Zum Eisengießer 1
97816 Lohr am Main, Germany Telefon +49 (0) 9352 / 18-0 Telelax +49 (0) $9352 / 18-2358$ documentation@boschrexroth.de www.boschrexroth.de
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements conceming a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth
 Bosch Group

Pressure relief valves

RE 25 860/11.11

Replaces:

RE 25 860/10.10
Pressure relief valves

Contents

Function
Page

Technical data
Valves for line installation 3
Device dimensions 5
Valves for block installation 7
Device dimensions 9
Curves 11

Features

- Type of connection for pipeline installation and block installation
- Adjustment methods such as hand wheel, lead-seal capable, fixed, hand wheel with scale (with and without lock)

Application

In conveying and handling equipment, agricultural engineering, in municipal-vehicles and in general mechanical engineering.

Note

The versions "Safety valves TÜV German Technical Inspection Agency model approved" in accordance with the Pressure Equipment Directive 97/23/EG are used to safeguard hydraulic accumulators, see technical data sheet RDEF 50153.

Function

This model series is based on a valve in seat design with damping piston. The punched valve seat serves to ensure high density, the damping piston prevents any valve vibration. It produces a flat control characteristic, i.e., even at an increasing flow rate the set opening pressure is for the most part maintained. This is achieved by the effect of the flow forces on the valve disk, whereby the valve continues to open as the flow rate increases.

Versatile version variants are available:

- Housing for pipeline installation with and without measuring connection.
- Valve cartridges for block installation.
- Various adjustment methods such as hand wheel, lead-seal capable, fixed, hand wheel with scale (with and without lock).
- Check valve before damping piston for fast response times.

Technical data

Design	Seat valve with damping
Line connections	for pipeline installation and block installation
Installation position	Optional
Ambient temperature	$-30 . . .+80^{\circ} \mathrm{C}$
Pressure medium	Hydraulic oils based on mineral oil acc. to DIN/ISO, other, e.g. environmentally-compatible fluids available on request
Viscosity	$10 . . .800 \mathrm{~mm}^{2} / \mathrm{s}$ permissible range $20 . . .100 \mathrm{~mm}^{2} / \mathrm{s}$ recommended range ... $2000 \mathrm{~mm}^{2} / \mathrm{s}$ for start permissible range
Pressure medium temperature	$-30^{\circ} \mathrm{C} . . .+80^{\circ} \mathrm{C}$ with NBR sealings, NBR $=$ Perbunan ${ }^{\circledR}$ $-15^{\circ} \mathrm{C} . . .+120^{\circ} \mathrm{C}$ with FKM sealings, $\mathrm{FKM}=$ Viton ${ }^{\circledR}$
Filtration	Oil contamination Class 19/16 in accordance with ISO/DIS 4406, or Class 10 in accordance with NAS 1638 to be achieved using filter $\beta_{25}=75$
Direction of flow rate	shown by symbol or marking
Operating pressure For line installation	P: max. permissible 350 bar, depending on number of load changes and temperature. Counter values on request. T: max. permissible 210 bar (NBR) or 80 bar (FKM), depending on number of load changes and temperature. Counter values on request.
For block installation	$\mathrm{P}:$ In accordance with set pressure. T: NBR max. 210 bar, FM max. 80 bar
MTTFd:	max. 150 years, PRV with set value >210 bar: B 10 value on request
Cracking pressure (tolerance $p_{\text {nom }}+5 \%$)	Set at flow $0.1 \mathrm{l} / \mathrm{min}$
Leakage oil flow	Max. 1 cm ${ }^{3} / \mathrm{min}$
Flow	Max. $120 \mathrm{l} / \mathrm{min}$, depending on set pressure and line \varnothing, see chapter "Characteristics"

Pressure relief valves for line installation

Threaded port	Version		Seals	Set pressure* [bar]	Weight [kg]	Material No.
	Fixed		NBR	10	0.9	0532001031
			FKM	10		0532001115
			NBR	12		0532001156
				15		0532001004
				20		0532001012
				25		0532001011
				30		0532001014
				40		0532001027
				50		0532001020
				60		0532001018
				70		0532001005
				80		0532001006
				90		0532001026
				100		0532001007
				110		0532001024
				140		0532001008
				140		R 917002 956**
				150		R 917002975 **
				150		0532001009
				170		0532001028
				180		0532001022
				190		0532001021
				200		0532001023
				210		0532001013
				210		0532001154
	Fixed, with nonreturn valve			210		R 917002 960**
	Fixed			230		0532001019
				250		0532001016
				300		0532001030

[^6]${ }^{*} p_{\text {nom }}+5 \%$ at $Q=0.1 \mathrm{l} / \mathrm{min}$, with back flow unloaded
** Pressure relief valve zinc-plated and transparent-passivated, special options upon request

NBR $=$ Perbunan ${ }^{\circledR}$, FKM $=$ Viton ${ }^{\circledR}$
${ }^{*} p_{\text {nom }}+5 \%$ at $Q=0.11 / \mathrm{min}$, with back flow unloaded
** Pressure relief valve zinc-plated and transparent-passivated, special options upon request

Device dimensions

Device dimensions (Continued)

Pressure relief valves for block installation

NBR $=$ Perbunan ${ }^{\circledR}$, FKM $=$ Viton ${ }^{\circledR}$, HNBR $=$ Therban ${ }^{\circledR}$
${ }^{*} p_{\text {nom }}+5 \%$ at $Q=0.1 \mathrm{l} / \mathrm{min}$, with back flow unloaded

Device dimensions

All sealing rings included loose

Device dimensions

Valve carrier for screwing-in

This pressure relief valve for block installation with $\mathrm{M} 26 \times 1.5$ internal thread is designed for particularly small installation areas. The hydraulic parameters are identical with those for $\mathrm{M} 30 \times 1.5$ internal thread. The exact pressure setting must ultimately be made by the customer.

Curves

v $35 \mathrm{~mm}^{2} / \mathrm{s}, T=50^{\circ} \mathrm{C}$
Exceeding the boundaries of application will cause a disproportionate increase in pressure, and even to the functional limit of the PRV.

For lower setting limits

Further notes

Special models for line installation with fatigue strength up to $\mathbf{3 5 0}$ bar on request.

For proper use, please observe the following additional data sheets:

- Hydraulic valves for mobile applications: general information RE 64 020-B1
- Pressure relief valves: product-specific instructions RE 25 860-B2
- Pressure relief valves: repair instructions RDE 25 860-R

Information regarding the correct handling of Bosch Rexroth hydraulic products is available in our publication:
"General Product Information for Hydraulic Products" RE 07008.

Bosch Rexroth AG
Hydraulics
Product Segment Mobile Controls
Robert-Bosch-Straße 2
D-71701 Schwieberdingen
Fax +49 (0) 711-811511 1814
info.brh-st@@boschrexroth.de
www.boschrexroth.com/brm
(c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements conceming a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Flow control valves

Flow divider, dual acting
3-way flow control valves, fixed
3-way flow control valves, adjustable

Contents

Flow divider,

- Function, Technical Data

3-way flow control valves, fixed

- Function, Technical Data

3-way flow control valves, adjustable

- Function, Technical Data

6

Features

- Type of connection for pipeline installation
- Adjustment methods such as fixed and adjustable

Application

In conveying and handling equipment, agricultural engineering, municipal-vehicles and in general mechanical engineering.

Flow divider valve, dual acting

Function

The flow divider valve is dual acting, i.e., the oil flow can be split up; however 2 oil flows can also be joined together. When dividing the flow an oil flow P is always divided into equal oil flows A and B, irrespective of pressure differences in A and B.

If the direction of flow is inverted, the oil flows A and B are always joined together in an equal ratio to form an oil flow P, irrespective of pressure differences in A and B .
A typical application for the flow divider valve is the synchronization of 2 cylinders with differing cylinder loads.

Technical data

3-way flow control valve, fixed

Function

3 -way flow control valves split up a delivered oil flow P into a regulated constant flow A and a residual flow B . The regulated oil flow A remains practically constant irrespective of any pressure changes in A or B . The residual flow can then be sent to the tank or drive a secondary system. For applications in vehicles the constant flow is used, e.g. for steering.

Directly actuated valves have a faster response for the pressure scale. The oil flow A is less constant as load pressure increases (see curve).
Pilot operated valves respond less sensitively to changes in load pressure.
Their response characteristic is dampened.

Valve, pilot controlled, VH1

Valve, directly actuated, VH4

Technical data

Design	3-way flow control valves, fixed
Line connections	for pipeline installation
Installation position	Optional
Ambient temperature	$-25 . . .+50^{\circ} \mathrm{C}$
Pressure medium	Mineral-based hydraulic oils in accordance with DIN/ISO, other, e.g. environmentally-compatible fluids available on request
Viscosity	$10 . . .800 \mathrm{~mm}^{2} / \mathrm{s}$ permissible range $20 . . .100 \mathrm{~mm}^{2} / \mathrm{s}$ recommended range $20 . . .2000 \mathrm{~mm}^{2} / \mathrm{s}$ for start permissible range
Pressure medium temperature	$-25 . . .+80^{\circ} \mathrm{C}$
Filtration	Oil contamination Class 19/16 in accordance with ISO/DIS 4406, or Class 10 in accordance with NAS 1638 to be achieved using filter $\beta_{25}=75$
Direction of flow rate	shown by symbol or marking
Operating pressure	Max. 210 bar
Max. flow, type $Q_{\mathrm{P}} \mathrm{I} / \mathrm{min}$ directly actuated $Q_{\mathrm{A}} \mathrm{I} / \mathrm{min}$ pilot controlle $Q_{\mathrm{A}} \mathrm{I} / \mathrm{min}$	VH1 VH4 55 55 - 30 30 -
Max. pressure difference	$\Delta p(\mathrm{~A} \rightarrow \mathrm{~B})=150 \mathrm{bar}$
Minimimu pressure drop	Directly actuated: 6 bar, pilot controlled: 12 bar

Type		$\begin{aligned} & Q_{\text {const. }} \\ & {[1 / \mathrm{min}]} \end{aligned}$	Pilot controlled	Direct	$\varnothing \mathrm{mm}$ M		kg	Material number
VH 1/2/1		2	-		1.2	-	0.9	0533103028
VH 1/3/4		3	\bullet		1.5	-		0533103007
VH 1/6/1		6	\bullet		2	-		0533103001
VH 1/9/1		9	-		3	-		0533103046
VH 1/12/2		12	\bullet		3	-		0533103002
VH 1/19/3		19	-		3.5	-		0533103051
VH 4/0.75/1		0.75		\bullet	1.0	-	0.9	0533103023
VH 4/1.5/1		1.5		-	1.2	-		0533103033
VH 4/2/1		2		-	1.5	1.0		0533103034
VH 4/3/1		3		-	2	1.5		0533103024
VH 4/4.5/1		4.5		-	2.5	2.5		0533103039
VH 4/6/...		6		-	2.5	2.5		0533103048
VH 4/6/1		6		-	3	2.5		0533103015
VH 4/7.5/A1		7.5			3.3	2.8		0533103056
VH 4/7.5/1		7.5		-	3.3	2.8		0533103029
VH 4/9/1		9		\bullet	3.5	3.0		0533103019
VH 4/11/18		11		-	4	3.5		0533103054
VH 4/12/1		12		-	4	3.5		0533103021
VH 4/15/1		15		-	4.5	3.5		0533103018
VH 4/17/1		17		-	5	4.5		0533103026
VH 4/20/1		20		-	6	5.5		0533103030
VH 4/23/2		23		-	5.3	-		0533103031
VH 4/1.5/1		1.5		-	1.3	1.5		0533103057

Valve, pilot controlled
Pressure scale response dampened. Flow more constant for rising load pressure.

Valve, directly actuated

Fast pressure scale response. Flow less constant for rising load pressure.

* M : $\varnothing \mathrm{mm}$ metering bore

D: $\varnothing \mathrm{mm}$ damping bore

Curves

$v 35 \mathrm{~mm}^{2} / \mathrm{s}$

The diagrams display the typical changes in the constant flow Q_{A} depending on the pressure difference in A and B as well as depending on the total flow Q_{P}.
The transfer for other constant flow variables is done as follows:
Ascertain the co-ordinate point from $Q_{\mathrm{P}}=$ desired constant flow Q_{A} and ordinate $Q_{\mathrm{A}}=100 \%$ and draw straight lines from it to the end points of the appropriate diagram above $Q_{\mathrm{P}}=55$ or $110 \mathrm{l} / \mathrm{min}$.

VH 4 directly actuated

Device dimensions

3-way flow control valve, adjustable
 Function

3-way flow control valves in this model series split up a delivered oil flow $Q_{\text {PR }}$ into a regulated constant flow $Q_{\text {REG }}$ and a residual flow Q_{BP}.
The regulated oil flow $Q_{\text {REG }}$ remains for the most part constant
 irrespective of any changes in pressure in REG or BP. The residual flow can then be sent to the tank or drive a secondary system.

Technical data

Design	3-way flow control valves, adjustable
Line connections	for pipeline installation
Installation position	Optional
Ambient temperature	$-25 . . .+50^{\circ} \mathrm{C}$
Pressure medium	Mineral-based hydraulic oils in accordance with DIN/ISO, other, e.g. environmentally-compatible fluids available on request
Viscosity	$10 . . .800 \mathrm{~mm}^{2} / \mathrm{s}$ permissible range $20 . . .100 \mathrm{~mm}^{2} / \mathrm{s}$ recommended range $20 . . .2000 \mathrm{~mm}^{2} / \mathrm{s}$ for start permissible range
Pressure medium temperature	$-25 . . .+80^{\circ} \mathrm{C}$
Filtration	Oil contamination Class 19/16 in accordance with ISO/DIS 4406, or Class 10 in accordance with NAS 1638 to be achieved using filter $\beta_{25}=75$
Direction of flow rate	shown by symbol or marking
Operating pressure	Max. 250 bar
Flow, regulated	1...30, 1 ...47, $1 . . .75 \mathrm{I} / \mathrm{min}$
Minimum pressure drop	3... 6 bar
Max. flow	Total flow $Q_{\mathrm{PR}}=114 \mathrm{l} / \mathrm{min}$ Constant flow $Q_{\text {REG }}$ see curve

Curves

The diagram shows the typical change in constant flow, irrespective of any pressure difference between $P_{\text {REG }}$ and P_{BP} as well as the total flow Q_{PR}.
The diagram is adapted to other constant flow variables as follows:
Select the desired constant flow on the abscissa, and go vertically up until the 100% line is reached.
From this coordinate, draw straight lines to the end points for $Q_{\mathrm{PR}}=120 \mathrm{I} / \mathrm{min}$.

Example:

Constant flow... $=20 \mathrm{I} / \mathrm{min}$
Total flow
Pressure difference between constant and residual flow
$P_{\mathrm{REG}}-P_{\mathrm{BP}}=150$ bar.
According to the diagram, the constant flow deviation deviates by 21% from the set value.
This diagram was recorded for an oil viscosity of $v=32 \mathrm{~mm}^{2} / \mathrm{s}$.

Device dimensions

Type		$Q_{\text {PR }}{ }^{[1 / \mathrm{min}]}$	$Q_{\text {REG }}[1 / \mathrm{min}]$		kg	Material number
VHR 4		114	0.5... 30	M 22×1.5	2.1	0533103502
			0.5... 47	M 22×1.5		0533103500
			0.5... 75	M27x2		0533103501

Information regarding the correct handling of Bosch Rexroth hydraulic products is available in our publication: „General Product Information for Hydraulic Products" RD 07008.

Bosch Rexroth AG
Hydraulics
Product Segment: Mobile Controls
Robert-Bosch-Straße 2
D-71701 Schwieberdingen
Fax +49 (0) 711-811511 1814
info.brh-stf@boschrexroth.de www.boschrexroth.com/brm
(c) This document, as well as the data, specifications and other information set forth in it, are the exclusive propeity of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements conceming a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Thermal pressure valve MHDBDT 06

Data sheet

Nominal size 6
Component series 2X
Maximum operating pressure 280 bar Maximum flow $3 \mathrm{I} / \mathrm{min}$

Overview of contents

Contents
Features
Ordering details
Function
Symbol
Technical data
Characteristic curves
Unit dimensions

Features

- Pressure adjustment, proportional to the temperature via a thermostat
- Low hysteresis
- Very good repeatability accuracy
- Choice of several temperature ranges
- Optional installation orientation
- Low weight
- Saves energy

Ordering details

The thermal pressure valve is a direct operated pressure relief valve of poppet seat design, where the nominal pressure is proportional to temperature within given limits.
The valve basically comprises of a housing, thermoelement (1), valve seat and valve cone. The maximum pressure is dependent on the selected version. The thermal element expands in relation to the temperature and thereby compresses the springs (2) and (3) via a spring plate. If the temperature at the thermoelement (1) is lower than the control range, then the spring decompresses (2) and the re-set spring (3) unloads the pressure
 chamber P to tank.
Technical data (for applications outside these parameters, please consult us!)
General

Weight	kg	0,8
Installation		Optional
Hydraulic		
Max. operating pressure at port P	bar	315
Control pressure at port P	bar	210 or 280 (for AA10VO control pump)
Pressure at port T	bar	Zero pressure, separate line to tank
Max. flow	1/min	3
Pressure fluid		Mineral oil (HL, HLP) to DIN 51524; fast bio-degradable pressure fluids to VDMA 24568 (also see RE 90221); HETG (rape seed oil); HEPG (polyglycols); HEES (synthetic ester); Other pressure fluids on request
Pressure fluid temperature range	${ }^{\circ} \mathrm{C}$	-20 to +80
Viscosity range	$\mathrm{mm}^{2} / \mathrm{s}$	2,8 to 300
Degree of contamination		class 20/18/15. We therefore recommend a filter with a minimum retention rate of $\beta_{10} \geq 75$.
Max. hysteresis	${ }^{\circ} \mathrm{C}$	4
Repeatability accuracy	\%	$< \pm 2 \%$ of $p_{\text {nom }}$

Installation notes:

MHDBDT 06 thermal pressure valves are only suitable for fluid circuits. The fluid to be measured should continually flow through the device once it is installed.

Characteristic curves (measured at $q_{\mathrm{v}}=2 \mathrm{l} / \mathrm{min}$ and $\Delta \delta=1^{\circ} \mathrm{C} / \mathrm{min}$)

Pressure/temperature characteristic curves

δ_{1}, δ_{2} see table \rightarrow

δ_{1}, δ_{2} see table \rightarrow

Temperature range thermostat:

δ_{1}		δ_{2}
$50^{\circ} \mathrm{C}$	-	$58^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$	-	$68^{\circ} \mathrm{C}$
$75^{\circ} \mathrm{C}$	-	$85^{\circ} \mathrm{C}$
$82^{\circ} \mathrm{C}$	-	$92^{\circ} \mathrm{C}$
$87^{\circ} \mathrm{C}$	-	$97^{\circ} \mathrm{C}$

Unit dimensions (dimensions in mm)

Ports P and T

Ports P and T						
Port thread	$\mathbf{d} 1$	Ød2	ØD	t1	t2	a
$\mathbf{0 6}$	M12 $\times 1,5$	13,8	22	2,4	11,5	15°
$\mathbf{1 9}$	$7 / 16-20$ UNF-2B	12,4	21	2,4	11,5	12°

[^7]Installation cavity

Installation cavity for valve					
Port thread	$\mathbf{d 1}$	Ød2	ØD	t1	t2
$\mathbf{0 6}$	M26 $\times 1,5$	29,05	40	3,1	15
$\mathbf{1 9}$	$\mathbf{1 1 / 1 6 - 1 2}$ UNF-2B	29,2	41	3,3	15

© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth
 Bosch Group

Throttle check valve and Check valve with SAE flanged ports MHFS; MHSV

RE 64548/06.03 1/6
Replaces: 03.94

Data sheet

Size 20, 25, 32
Series 1 X
Operating pressure max. 420 bar

Type MHFS ...-1X/...

Type MHSV...-1X/...

Overview of contents

Contents

Features
Throttle/Check Valve, Type MHFS:

- Sizes available
- Function, Section, Symbol
- Technical Data
- Operating Curves
- Unit Dimensions

Check Valve, Type MHSV:

- Sizes available

4

- Section, Symbol 4
- Technical Data 4
- Unit Dimensions 4

Check Valve, Type MHSV 22 PB2:

- Size available 5
- Section, Symbol 5
- Technical Data 5
- Unit Dimensions 5

Throttle/Check Valve, Type MHFS

Sizes available:

- Size $20=3 / 4^{\prime \prime}$ SA

Type MHFS 20 E2B1-1X/PBF45B08V11
Ordering code R900417906

- Size $25=1$ " SAE

Type MHFS 25 E2B1-1X/PBF10B04V11
Ordering code R900334465

- Size $32=11 / 4^{\prime \prime} \mathrm{SAE}$

Type MHFS 32 E2B1-1X/PBF10B03V11
Ordering code R900411106

Function, Section, Symbol

The valves are primarily used for limiting cylinder speeds, in order to reduce shocks when stopping heavy loads.
They consist basically of housing (1), spindle (2), valve poppet (3) and compression spring (4).

Limiting the cylinder speed (flow from B to A) is achieved by means of spindle (2). Depending on the spindle setting, radial holes (5) in valve poppet (3) are plugged to produce the required throttling to flow.
Fixed opening (6) between A and B prevents the throttle opening from being reduced to 0 . This opening is $7.6 \mathrm{~mm}^{2}$ for size $20,13.2 \mathrm{~mm}^{2}$ for size 25 , and $26.4 \mathrm{~mm}^{2}$ for size 32 . For the lifting operation (flow from A to B), valve poppet (3), which is guided by spindle (2), is pressed against compression spring (4) to allow the valve to fully open.

Technical data (For operation outside these parameters, please consult us!)

Max. operating pressure	bar	420
Cracking pressure	bar	0,5
Fluid		Mineral oil to DIN 51524 (HL, HLP), phosphate ester (HFD-R)
Fluid temperature range	${ }^{\circ} \mathrm{C}$	-20 to +80
Viscosity range	$\mathrm{mm} 2 / \mathrm{s}$	2,6 to 380
Fluid cleanliness (maximum permissible)		ISO 4406 (C) Class 20/18/15
Weight	Sg	2,1
	Size 20	kg
	3,5	
	Size 25	kg
	5,1	

Throttle/Check Valve, Type MHFS ...
Operating Curves (measured at $v=42 \mathrm{~mm}^{2} / \mathrm{s}$ and $\vartheta=50^{\circ} \mathrm{C}$)

Throttle opening dependent on spindle movement
1 Size 20
2 Size 25
3 Size 32

Unit dimensions (Dimensions in mm)

Size	Port A, B ${ }^{1)}$	L1 max.	L2	L3	L4	L5	L6	H1	H2	ØD1	ØD2	D3	T1
$\mathbf{2 0}$	SAE 3/4"	85	60	30	23,9	30	49	75	50,8	11	$\mathbf{1 8}$	M10	$\mathbf{1 4}$
$\mathbf{2 5}$	SAE 1"	100	75	37	27,8	40	60	80	57,2	13,5	20	M12	16
$\mathbf{3 2}$	SAE $11 / 4^{\prime \prime}$	116	85	42,5	31,7	42,5	70	90	66,7	15	24	M14 $\times 1,5$	$\mathbf{1 8}$

[^8]
Check Valve, Type MHSV

Sizes available:

- Size $20=3 / 4^{\prime \prime}$ SAE

Type MHSV 22 ZB1-1X/M11-099
Ordering code R900493236

- Size $25=1$ " SAE

Type MHSV 25 FB1-1X/M11
Ordering code R900358470

Section, Symbol

- Size $32=1$ 1/4" SAE

Type MHSV 30 FB1-1X/M11
Ordering code R900307483

Technical data (For operation outside these parameters, please consult us!)

Max. operating presssure		bar	420
Cracking pressure:	Size 20	bar	0,6
	Size 25	bar	0,5
	Size 32	bar	1,5
Fluid			Mineral oil to DIN 51 524 (HL, HLP) Phosphate ester (HFD-R)
Fluid temperature range		${ }^{\circ} \mathrm{C}$	-20 to +80
Viscosity range		$\mathrm{mm}^{2} / \mathrm{s}$	2,6 to 380
Fluid cleanliness (maximum permissible)			ISO 4406 (C) Class 20/18/15
Weight		kg	Approx. 1

Unit dimensions (Dimensions in mm)

Size	Port $A, B^{1)}$	L1	L2	L3 $\pm 0,2$	L4 $\pm 0,2$	H1	ØD1	OD2	ØD3	
20	SAE 3/4"	70	50	50,8	23,9	57	40	20	11,5	
25	SAE $1^{\prime \prime}$	80	60	57,2	27,8	70	46	25	13,5	
32	SAE 1 1/4"	90	72	66,7	31,7	78	52	30	16	

[^9]

Check Valve, Type MHSV 22 PB2

Size available:

- Size $20=3 / 4$ " SAE

Section, Symbol

Technical data (For operation outside these parameters, please consult us!)

Max. operating presssure	bar	420
Cracking pressure	bar	0,6
Fluid		Mineral oil to DIN 51 $524(H L, ~ H L P) ~ P h o s-~$ phate ester (HFD-R)
Fluid temperature range	${ }^{\circ} \mathrm{C}$	-20 to +80
Viscosity range	$\mathrm{mm}^{2} / \mathrm{s}$	2,6 to 380
Fluid cleanliness		ISO 4406 (C) (maximum permissible)
Weight	kg	Approx. 1

Unit dimensions (Dimensions in mm)

3/4" SAE ports (A, B) 6000 PSI (420 bar)
Seal kit ordering code R900312289

Notes

Bosch Rexroth AG
Mobile Applications
Zum Eisengießer 1 97816 Lohr am Main, Germany
Telefon +49 (0) 93 52-18 0
Telefax +49 (0) 93 52-18 2358 documentation@boschrexroth.de www.boschrexroth.de
© 2003 by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG.
In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.
The data specified above only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The details stated do not release you from the responsibility for carrying out your own assessment and verification. It must be remembered that our products are subject to a natural process of wear and ageing.

Pilot Control Devices

Designation	Type	Data sheet	Page
Hydraulic Pilot Control Devices			
Hydraulic pilot control device in sandwich plate design	2TH6	RE 64552	679
Hydraulic pilot control device in pedal design	2TH6R	RE 64551	687
Hydraulic pilot control device for armrest installation	4TH5, 4TH6, 4TH6N	RE 64555	693
Hydraulic pilot control device with 2 pedals and damping system	4TH5NR, 5TH5NR, 6TH5NR	RE 64535	705
Hydraulic pilot control device with 2 pedals and damping system	4TH6NR, 5TH6NR, 6TH6NR	RE 64554	713
Hydraulic pilot control device with end position lock	4THF5, 6THF5	RE 64557	721
Hydraulic pilot control device with end position lock	4THF6, 5THF6	RE 64553	733
Hydraulic pilot control device	TH7	RE 64558	745

Electronic Pilot Control Devices

Electronic pilot control device
THE5
RE 29881
755

Electronic pilot control device
EJ
RE 29896
799

For the latest information on pilot control devices, please visit our website:

[^0]: *) Execution I: DIN 3852, part of 1
 Execution II: DIN 3852, part of 3, accordingly ISO 6149 (for O-ring sealing)

[^1]: (1) $=$ As shown, see page 5
 (2) $=$ Raising and lowering solenoids turned 90°
 (4) $=$ Raising and lowering solenoids with different coding

[^2]: *) Execution III: EN ISO 6149-1

[^3]: *) Execution III: EN ISO 6149-1 (for O-ring sealing)

[^4]: 1) The cleanliness classes speciified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components.
[^5]: c 2003 by Bosch Rexroth AG, Mobile Hydraulics, D-97813 Lohr am Main All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.
 The data specified above only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The details stated do not release you from the responsibility for carrying out your own assessment and verification. It must be remembered that our products are subject to a natural process of wear and ageing.

[^6]: NBR $=$ Perbunan ${ }^{\circledR}, ~ F K M=$ Viton ${ }^{\circledR}$

[^7]: Bosch Rexroth AG
 Mobile Applications
 Zum Eisengießer 1
 97816 Lohr am Main, Germany
 Phone +49 (0) $9352 / 18-0$
 Fax $\quad+49$ (0) $9352 / 18-2358$
 info.brm-mc@boschrexroth.de
 www.boschrexroth.de

[^8]: 1) $6000 \mathrm{PSI}(420 \mathrm{bar})$
[^9]: 1) $6000 \mathrm{PSI}(420 \mathrm{bar}$)
 ${ }^{2)}$ If necessary, state both ordering codes
