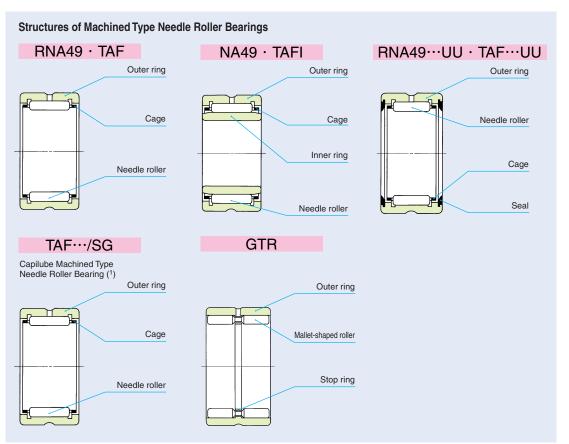


MACHINED TYPE NEEDLE ROLLER BEARINGS


- Machined Type Caged Needle Roller Bearings
- Machined Type Guide Needle Roller Bearings
- **●**Capilube Machined Type Needle Roller Bearings

■ Structure and Features

bearings with a low sectional height and large load ratings. The outer ring has high rigidity and can easily be used even for light alloy housings. These bearings are available in metric series and inch series, both of which have the caged type and the full complement type. It is therefore possible to select a suitable bearing for use under various conditions such as heavy loads and high-speed or low-speed rotations. In addition, there are bearings with and without an inner ring. As the type without inner ring uses a shaft as the raceway surface, a compact design is possible.

Note(1) For the details of Capilube, please refer page A55

D1

 \Box

NA

TAFI TRI

Machined Type Needle Roller Bearings are available in various types shown in Table 1.

Table 1.1 Type of bearing (Standard type)

	Туре	Caged Neo Bear		Guide Needle Roller Bearings		
Series		Without inner ring	With inner ring	Without inner ring	With inner ring	
	Dimension series 49	RNA 49	NA 49			
ries	Dimension series 69	RNA 69	NA 69			
ic se	Dimension series 48	RNA 48	NA 48	GTR	GTRI	
2	For heavy duty	TR	TRI			
	For light duty	TAF	TAFI			
	Inch series	BR	BRI	GBR	GBRI	

Table 1.2 Type of bearing (With seal)

Туре		Caged Neo Bear	edle Roller rings	Guide Needle Roller Bearings		
Se	eries		Without inner ring	With inner ring	Without inner ring	With inner ring
es	Dimension	Two side seals	RNA 49 ··· UU	NA 49 ··· UU		
S	series 49	One side seal	RNA 49 ··· U	NA 49 ··· U		
Metric	Dimension	Two side seals	RNA 69 ··· UU	NA 69 ··· UU		
Š	Series 69	One side seal	RNA 69 ··· U	NA 69 ··· U		
Inc	Inch corios	Two side seals	BR ···UU	BRI …UU	GBR···UU	GBRI ··· UU
Inch series			BR ···U	BRI ···U	GBR…U	GBRI…U

Caged Needle Roller Bearings

This type of bearing combines a collared outer ring with the TKE 's unique lightweight rigid cage and needle rollers. During operation, needle rollers are guided precisely by the cage, and an ideal load distribution is obtained.

The metric series consists of the NA48 and NA49 series of ISO Standard, NA69 and TAFI series which are based on the international dimension series, and the heavy duty TRI series which is widely used in Japan. The TAFI series has a sectional height as low as that of the shell type and is used for light loads.

The inch series or BRI series is based on the specifications of ANSI Standard of USA.

Caged Needle Roller Bearings without Inner Ring

As shown in the section "Design of shaft and housing" on page A44, any desired radial clearance can be selected by assembling this type of bearing with a shaft which is heat-treated and finished by grinding. These bearings are free from the effects on dimensional accuracy caused by assembling an inner ring,

so that the rotational accuracy is improved. Also, the shaft rigidity can be improved as the shaft diameter can be increased by an amount corresponding to the inner ring thickness.

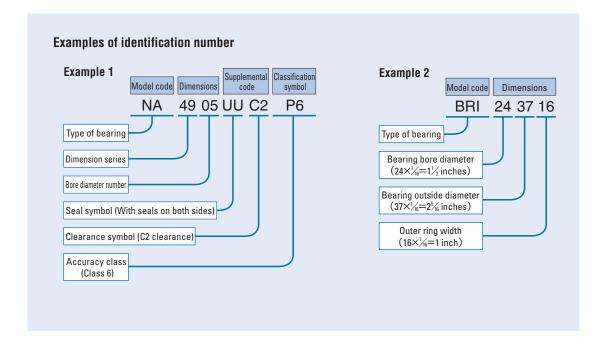
Caged Needle Roller Bearings with Inner Ring

This type of bearing is used when the shaft cannot be heat-treated and finished by grinding. The outer and inner rings are separable and a small relief clearance is provided on both sides of the inner ring raceway to facilitate bearing mounting. In the TRI and BRI series, the width of the inner ring is larger than that of the outer ring.

Due to heat expansion during operation or mounting errors, the inner or outer ring may be shifted axially and the whole length of the rollers may not be in contact with the raceway. Therefore, attention should be paid to the allowable axial shift S as shown in the table of dimensions.

Needle Roller Bearings with Seal

These bearings are sealed types of the NA49, NA69 and BRI series bearings, in which a seal is installed on one side (type with one seal) or both sides (type with two seals) of the bearing. The seal is made of special synthetic rubber and effectively prevents dust penetration and grease leakage.


Guide Needle Roller Bearings

These bearings are full complement type bearings and use mallet-shaped rollers which are guided accurately by the guide rail located at the center of the outer ring raceway and the guide groove of the mallet-shaped roller. This minimizes skewing (tilting of the roller from its rotating axis), which is normally a weak point of full complement bearings, and improves the rotational accuracy. This type of bearing is especially suitable for heavy loads, shock loads and oscillating motions.

The bearings are available in metric and inch series. Bearings with and without inner rings are available in both series. In bearings with an inner ring, the width of the inner ring is larger than that of the outer ring. The GBRI series of the inch series includes types with a seal or seals which are incorporated on one or both sides.

■ Identification Number

The identification number of Machined Type Needle Roller Bearings consists of a model code, dimensions, any supplemental codes and a classification symbol. Examples are shown below.

Accuracy

Machined Type Needle Roller Bearings are manufactured based on JIS (See page A31.). The tolerances for the smallest single roller set bore diameter of bearings without inner ring are based on Table 14 on page A33. For BR and BRI series, the accuracy is based on Table 2 and the tolerances for the smallest single roller set bore diameter are based on Table 3.

Table 2 Accuracy of inner and outer rings of inch series BR and BRII (1)

unit: μ m

_		-								a
	d or $DNominal bearing bore dia.or outside dia.mm$		$\Delta_{d\mathrm{mp}}$ Single plane mean bore diameter deviation		$\Delta_{D{ m mp}}$ Single plane mean outside diameter deviation		$\Delta_{B_{ m S}}$ ($\Delta_{C_{ m S}}$) Deviation of a single inner (or outer) ring width		$K_{ m ia}$ Radial runout of assembled bearing inner ring	$K_{ m ea}$ Radial runout of assembled bearing outer ring
	Over	Incl.	High	Low	High	Low	High	Low	Max.	Max.
	_	19.050	0	-10	_	_	0	- 130	10	_
	19.050	30.162	0	- 13	0	- 13	0	- 130	13	15
	30.162	50.800	0	- 13	0	- 13	0	- 130	15	20
	50.800	82.550	0	- 15	0	- 15	0	- 130	20	25
	82.550	120.650	0	- 20	0	- 20	0	- 130	25	35
	120.650	184.150	_	_	0	- 25	0	- 130	30	45

Remark d for Δ_{dmp} , Δ_{Bs} , Δ_{Cs} and K_{ia} , and D for Δ_{Dmp} and K_{ea} Note(1) For GBR, GBRI, refer to Metric series tables on page A31-A32.

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Table 3 Tolerances for smallest single roller set bore diameter $F_{
m ws\;min}$ of inch series BR(1) unit: μ m

TO THE PERSON AND THE								
F Nominal roller s m	et bore diameter	$\Delta_{F_{ m W}}$ Deviation of sma	llest single roller					
Over	Incl.	High	Low					
_	18.034	+43	+20					
18.034	30.226	+46	+ 23					
30.226	41.910	+48	+ 25					
41.910	50.038	+51	+ 25					
50.038	70.104	+ 53	+ 28					
70.104	80.010	+ 58	+ 28					
80.010	102.108	+61	+31					

Note(1) For GBR, refer to Metric series tables on page A33.

Radial internal clearances of Machined Type Needle Roller Bearings are made to the CN clearance shown in Table 18 on page A37. Radial internal clearances of BRI series are based on Table 4.

Table 4 Radial internal clearance of

incl	n series BRI ((1)	unit: μ m
	w et bore diameter m	Radial intern	al clearance
Over	Incl.	Min.	Max.
_	18.034	33	66
18.034	25.908	41	76
25.908	30.226	46	82
30.226	35.052	48	86
35.052	41.910	50	89
41.910	50.038	50	92
50.038	70.104	56	99
70.104	80.010	56	104
80.010	100.076	63	117
100.076	102.108	68	127

Note(1) For GBRI, refer to Metric series tables on page A37.

Table 5 Bearings with prepacked grease

O: With prepacked grease ×: Without prepacked grease

	Standard type	With seals on both sides	With a seal on one side		
		RNA, NA	×	0	×
Caged Needle Roller Bearings	Metric series	TR, TRI	×	-	_
Cayed Needle Holler Dearlings		TAF, TAFI	×	_	_
	Inch series	BR, BRI	×	0	×
Guide Needle Roller Bearings	Metric series	GTR, GTRI	×	_	_
	Inch series	GBR, GBRI	×	0	×

The recommended fits for Machined Type Needle Roller Bearings are shown in Tables 22 to 24 on pages A41 and A42.

Lubrication

Fit

Bearings with prepacked grease are shown in Table 5. ALVANIA GREASE S2 (SHELL) is prepacked as the lubricating grease.

In the case of bearings without prepacked grease, perform proper lubrication. Operating them without lubrication will increase the wear of the rolling contact surfaces and shorten their lives.

Table 6.1 shows the number of oil holes of the outer ring and Table 6.2 shows the number of oil holes of the inner ring.

When an outer ring with an oil hole is especially required for the type without an oil hole, add "-OH" before the clearance symbol in the identification number. When an outer ring with an oil hole and an oil groove is required for the type without an oil hole, attach "-OG" before the clearance symbol.

Example: TAFI 203216 - OH C2 P6

When an outer ring with multiple oil holes or an inner ring with an oil hole(s) is required, please consult \mathbb{R}^{n} .

Table 6.1 Number of oil holes of the outer ring

	Bearing	Number of oil holes of the outer ring				
	Nominal roller set bore diameter $F_{ m w}$ mm					With a seal on one side
		RNA, NA		1	1	1
	Metric series	TR, TRI		1	_	_
Caged Needle Roller		TAF, TAFI	<i>F</i> _w ≤ 26	0	_	_
Bearings			26 < F _w	1	_	_
	Inch series	BR, BRI	$F_{\rm w} \le 69.850$	1	1	1
			69.850 < F _w	2	1	1
Guide Needle Roller Bearings	Metric series	GTR, GTRI		1	_	_
duide iveedie noller bearings	Inch series	GBR, GB	RI	1	1	1

Remark The type with an oil hole(s) is provided with an oil groove.

Table 6.2 Number of oil holes of the inner ring

	Number of oil holes of the inner ring					
Bearing type Nominal bearing bore diameter d mm				Standard type	With seals on both sides	With a seal on one side
		NA	NA		0	0
Canad Maadla Dallan	Metric series	TRI		0	0	0
Caged Needle Roller Bearings		TAFI		0	_	_
Dearings	Inch series	BRI	<i>d</i> ≦ 76.200	1	1	1
			76.200 < d	2	1	1
Guide Needle Roller Bearings	Metric series	GTRI		0	_	_
Outue Needle Holler Bearings	Inch series	GBRI		0	0	0

Remark The type with an oil hole(s) is provided with an oil groove.

Matched Set Bearings

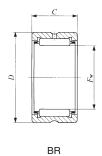
When using two or more Machined Type Needle Roller Bearings adjacent to each other on the same shaft, it is necessary to obtain an even load distribution. On request, a set of bearings is available, in which bearings are matched to obtain an even load distribution.

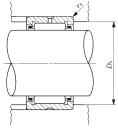
Mounting dimensions for Machined Type Needle Roller Bearings are shown in the table of dimensions.

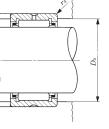
NA TAFI TRI

TAFI

MACHINED TYPE NEEDLE ROLLER BEARINGS


Without Inner Ring, Inch Series




Shaft dia. 50.800 — 101.600mm

		Mass (Ref.)	Boundar	Standard mounting dimensions mm			
Shaft dia. mm (inch)	ldentification number	g	$F_{ m w}$	D	С	$D_{ m a}$ Max.	$r_{\rm as\ max}^{(1)}$
50.800 (2)	BR 324116 BR 324120	190 240	50.800 (2) 50.800 (2)	65.088 (2 ½) 65.088 (2 ½)	25.400(1) 31.750(1½)	57.8 57.8	1.5 1.5
57.150 (2 ¹ ⁄ ₄)	BR 364824 BR 364828	435 510	57.150 (2 ½) 57.150 (2 ½)	76.200(3) 76.200(3)	38.100(1½) 44.450(1¾)	69 69	1.5 1.5
63.500 (2½)	BR 405224 BR 405228	475 555	63.500 (2 ½) 63.500 (2 ½)	82.550(3½) 82.550(3½)	38.100(1½) 44.450(1¾)	74.3 74.3	2 2
69.850 (2 ³ ⁄ ₄)	BR 445624 BR 445628	510 600	69.850 (2 ¾ ₄) 69.850 (2 ¾ ₄)	88.900 (3 ½) 88.900 (3 ½)	38.100(1½) 44.450(1¾)	80.7 80.7	2 2
76.200 (3)	BR 486024 BR 486028	555 650	76.200(3) 76.200(3)	95.250 (3 ³ ⁄ ₄) 95.250 (3 ³ ⁄ ₄)	38.100(1½) 44.450(1¾)	87 87	2 2
82.550 (3 ¹ ⁄ ₄)	BR 526828 BR 526832	990 1 140	82.550 (3 ½) 82.550 (3 ½)	107.950(4½) 107.950(4½)	44.450 (1 ³ / ₄) 50.800 (2)	99.7 99.7	2 2
88.900 (3½)	BR 567232	1 220	88.900 (3 ½)	114.300(4½)	50.800(2)	106.1	2
95.250 (3 ³ ⁄ ₄)	BR 607632	1 290	95.250 (3 ¾ ₄)	120.650(4¾)	50.800(2)	111.4	2.5
101.600 (4)	BR 648032	1 370	101.600(4)	127.000(5)	50.800(2)	117.8	2.5

lotes(1) Maxim	num permissible c	corner radius of	the housing
----------------	-------------------	------------------	-------------

Basic dynamic load rating	Basic static load rating C_{0}	Allowable rotational speed(2)	
N	N	rpm	
51 000	89 400	8 000	
63 200	118 000	8 000	
90 300	158 000	7 000	
105 000	191 000	7 000	
94 600	174 000	6 500	
110 000	210 000	6 500	
98 700	189 000	5 500	
114 000	228 000	5 500	
105 000	211 000	5 500	
122 000	255 000	5 500	
141 000	259 000	5 000	
154 000	290 000	5 000	
162 000	316 000	4 500	
169 000	342 000	4 000	
176 000	368 000	4 000	

^(?) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. In bearings with a roller set bore diameter $F_{\rm w}$ of 69.850 mm or less, the outer ring has an oil groove and an oil hole. In others, the

outer ring has an oil groove and two oil holes.

2. No grease is prepacked. Perform proper lubrication.